IRS-Assisted Physical Layer Network Coding Over Two-Way Relay Fading Channels

This article investigates the performance of intelligent reflective surfaces (IRS)-aided physical layer network coding (PNC) in two-way relaying channels (TWRC). Specifically, IRS is used to eliminate carrier phase offset (CPO) at the relay node. To this end, the IRS reflectors' phase shifts ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 71; no. 8; pp. 8424 - 8440
Main Authors AlaaEldin, Mahmoud, Alsusa, Emad, Seddik, Karim G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2022.3172229

Cover

More Information
Summary:This article investigates the performance of intelligent reflective surfaces (IRS)-aided physical layer network coding (PNC) in two-way relaying channels (TWRC). Specifically, IRS is used to eliminate carrier phase offset (CPO) at the relay node. To this end, the IRS reflectors' phase shifts are optimized to align the received signals from two source nodes at the relay. This facilitates using a simple mapping function at the relay to map the superimposed signal to a network-coded signal. Two scenarios are considered, the first of which assumes that each source node is served by a separate IRS panel, while the second scenario considers the more challenging case where only one IRS panel is available for the two source nodes. In the latter case, the IRS panel is seen by both source nodes and its phase shifts are optimized to mitigate the CPO problem while maximizing the received signal amplitude at the relay. This optimization problem is formulated and solved over the complex circle manifold. Finally, we extend the IRS-assisted PNC system to include channel coding and higher modulation orders, for which a repeat accumulate (RA) channel-coded IRS-aided PNC scheme is proposed for general quadrature amplitude modulation (QAM) signals. A belief propagation (BP) based algorithm is designed to decode the network-coded sequences over a q-Ring using modular arithmetic. Our simulation results validate the theoretical error expressions derived for the two-IRS scenario as well as the efficacy of the proposed manifold optimization approach for the one-IRS scenario. The results also confirm the efficacy of the designed channel-coded IRS-aided PNC using high QAM modulation orders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2022.3172229