Group-Sparsity Learning Approach for Bearing Fault Diagnosis

Fault impulse extraction under strong background noise and/or multiple interferences is a challenging task for bearing fault diagnosis. Sparse representation has been widely applied to extract fault impulses and can achieve state-of-the-art performance. However, most of the current methods rely on c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 18; no. 7; pp. 4566 - 4576
Main Authors Dai, Jisheng, So, Hing Cheung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2021.3119002

Cover

More Information
Summary:Fault impulse extraction under strong background noise and/or multiple interferences is a challenging task for bearing fault diagnosis. Sparse representation has been widely applied to extract fault impulses and can achieve state-of-the-art performance. However, most of the current methods rely on carefully tuning several hyperparameters and suffer from possible algorithmic degradation due to the approximate regularization and/or heuristic sparsity model. To overcome these drawbacks, in this article, we present a sparse Bayesian learning (SBL) framework for bearing fault diagnosis, and then propose two group-sparsity learning algorithms to extract fault impulses, where the first one exploits the group-sparsity of fault impulses only, whereas the second one utilizes additional periodicity behavior of fault impulses. Due to the inherent learning capability of the SBL framework, the proposed algorithms can tune hyperparameters automatically and do not require any prior knowledge. Another advantage is that our solutions are maximum a <inline-formula><tex-math notation="LaTeX">posteriori</tex-math></inline-formula> estimators in the sense of Bayesian optimality, which can yield higher accuracy. Results on both simulated and real datasets demonstrate the superiority of the developed algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2021.3119002