A Simplified Discontinuous Galerkin Self-Dual Integral Equation Formulation for Electromagnetic Scattering From Extremely Large IBC Objects

The mechanism of each term in the discontinuous Galerkin (DG) method is analyzed and studied numerically. A simplified DG self-dual integral equation (SDIE) formulation is proposed for solving electromagnetic scattering from large-scale objects with impedance boundary condition (IBC). Numerical resu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 70; no. 5; pp. 3575 - 3586
Main Authors Huang, Xiao-Wei, Yang, Ming-Lin, Sheng, Xin-Qing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-926X
1558-2221
DOI10.1109/TAP.2021.3137485

Cover

More Information
Summary:The mechanism of each term in the discontinuous Galerkin (DG) method is analyzed and studied numerically. A simplified DG self-dual integral equation (SDIE) formulation is proposed for solving electromagnetic scattering from large-scale objects with impedance boundary condition (IBC). Numerical results show that the proposed formulation is more flexible and memory saving than the conventional DG formulations, especially for implementing the multilevel fast multipole algorithm (MLFMA). Moreover, a massively parallel strategy of the MLFMA is employed to further strengthen its capability for electrically large problems. Numerical experiments demonstrate the accuracy and efficiency of the proposed formulation for analyzing electromagnetic scattering problems of IBC objects with billions of unknowns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2021.3137485