A Simplified Discontinuous Galerkin Self-Dual Integral Equation Formulation for Electromagnetic Scattering From Extremely Large IBC Objects
The mechanism of each term in the discontinuous Galerkin (DG) method is analyzed and studied numerically. A simplified DG self-dual integral equation (SDIE) formulation is proposed for solving electromagnetic scattering from large-scale objects with impedance boundary condition (IBC). Numerical resu...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 70; no. 5; pp. 3575 - 3586 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-926X 1558-2221 |
DOI | 10.1109/TAP.2021.3137485 |
Cover
Summary: | The mechanism of each term in the discontinuous Galerkin (DG) method is analyzed and studied numerically. A simplified DG self-dual integral equation (SDIE) formulation is proposed for solving electromagnetic scattering from large-scale objects with impedance boundary condition (IBC). Numerical results show that the proposed formulation is more flexible and memory saving than the conventional DG formulations, especially for implementing the multilevel fast multipole algorithm (MLFMA). Moreover, a massively parallel strategy of the MLFMA is employed to further strengthen its capability for electrically large problems. Numerical experiments demonstrate the accuracy and efficiency of the proposed formulation for analyzing electromagnetic scattering problems of IBC objects with billions of unknowns. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2021.3137485 |