Anisotropic Disturbance Rejection for Kinematically Redundant Systems With Applications on an UVMS

Systems with a manipulator and a mobile base, such as in aerial and underwater applications, are susceptible to disturbances which create difficulties in maintaining a desired end effector pose. However, kinematically redundant vehicle manipulator systems can make use of the continuous space of conf...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 6; no. 4; pp. 7017 - 7024
Main Authors Marais, Wilhelm J., Williams, Stefan B., Pizarro, Oscar
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2021.3097067

Cover

More Information
Summary:Systems with a manipulator and a mobile base, such as in aerial and underwater applications, are susceptible to disturbances which create difficulties in maintaining a desired end effector pose. However, kinematically redundant vehicle manipulator systems can make use of the continuous space of configurations to solve an inverse kinematics problem that can be exploited to improve disturbance rejection. In this letter, we explore disturbance rejection along a given direction for both a single pose, and along a trajectory. Simulated validation results are provided on an underwater vehicle manipulator system subject to environmental disturbances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2021.3097067