Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance

A simple way to mitigate the potential negative side-effects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation....

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 3; no. 2; pp. 1112 - 1119
Main Authors Khalil, Islam S. M., Mahdy, Dalia, Sharkawy, Ahmed El, Moustafa, Ramez R., Tabak, Ahmet Fatih, Mitwally, Mohamed E., Hesham, Sarah, Hamdi, Nabila, Klingner, Anke, Mohamed, Abdelrahman, Sitti, Metin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2018.2792156

Cover

More Information
Summary:A simple way to mitigate the potential negative side-effects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of <inline-formula> <tex-math notation="LaTeX">{\text{0.84}\pm \text{0.41}}</tex-math></inline-formula> and 2.15 mm, respectively, and achieve removal rate of <inline-formula><tex-math notation="LaTeX">-\text{0.614} \pm \text{0.303}</tex-math> </inline-formula> mm<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>/min at room temperature (<inline-formula><tex-math notation="LaTeX">{\text{25}}^{\circ }</tex-math></inline-formula>C) and <inline-formula><tex-math notation="LaTeX">-\text{0.482} \pm \text{0.23}</tex-math></inline-formula> mm <inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>/min at body temperature (37 <inline-formula><tex-math notation="LaTeX">^{\circ}</tex-math></inline-formula>C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of <inline-formula><tex-math notation="LaTeX">(\text{46} \pm \text{10.9}) \times \text{10}^{4}</tex-math> </inline-formula> cell/ml, whereas the count in the absence of rubbing is <inline-formula><tex-math notation="LaTeX"> (\text{2} \pm \text{1.41}) \times \text{10}^{4}</tex-math></inline-formula> cell/ml, after 40 min.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2018.2792156