Energy Optimal Wireless Data Transmission for Wearable Devices: A Compression Approach

Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 67; no. 10; pp. 9605 - 9618
Main Authors Zhang, Wei, Fan, Rui, Wen, Yonggang, Liu, Fang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2018.2859433

Cover

Abstract Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient <inline-formula><tex-math notation="LaTeX">(1+\epsilon)</tex-math></inline-formula> approximation algorithm for an arbitrarily small <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use.
AbstractList Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient <inline-formula><tex-math notation="LaTeX">(1+\epsilon)</tex-math></inline-formula> approximation algorithm for an arbitrarily small <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use.
Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient (1 + ϵ) approximation algorithm for an arbitrarily small ϵ, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use.
Author Fan, Rui
Wen, Yonggang
Zhang, Wei
Liu, Fang
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-2644-2582
  surname: Zhang
  fullname: Zhang, Wei
  email: wei.zhang@ieee.org
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Rui
  surname: Fan
  fullname: Fan, Rui
  email: fanrui@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Yonggang
  orcidid: 0000-0002-2751-5114
  surname: Wen
  fullname: Wen, Yonggang
  email: ygwen@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  email: fliu@ieee.org
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BookMark eNp9kM1Lw0AQxRepYFu9C14WPKfuZ5r1Vmr9gEIvsT0um3RWt6RJ3E2F_vduSfHgwdMwzHvzZn4jNKibGhC6pWRCKVEP-TqfMEKzCcukEpxfoCFVXCWKSzVAQxJHiZJCXqFRCLvYCqHoEK0XNfiPI161ndubCm-chwpCwE-mMzj3pg57F4JramwbjzdgvCkqwE_w7UoIj3iG582-9dBrZm3rG1N-XqNLa6oAN-c6Ru_Pi3z-mixXL2_z2TIpmaJdUmSl5LIwhWLbgm2JsoxYabksWVZIPrVQ0K0hTCgmuEoFEZxsp4xZsBzSlPExuu_3xtivA4RO75qDr2OkZpRFABlJSVSRXlX6JgQPVrc-fuuPmhJ9oqcjPX2ip8_0oiX9YyldZ7r4Y-eNq_4z3vVGBwC_OZmItzDOfwAIrX4F
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_comcom_2020_07_005
crossref_primary_10_1109_JIOT_2021_3091849
crossref_primary_10_1007_s00521_021_06656_6
crossref_primary_10_1016_j_heliyon_2023_e18783
crossref_primary_10_1016_j_comcom_2020_05_039
crossref_primary_10_1360_SSC_2022_0164
crossref_primary_10_3390_s18124422
crossref_primary_10_1109_TCOMM_2019_2919837
crossref_primary_10_3390_electronics11193032
crossref_primary_10_1109_TCOMM_2021_3077948
crossref_primary_10_1109_TCOMM_2020_3022692
Cites_doi 10.1145/3102301
10.1109/TVT.2014.2365181
10.1109/TVT.2017.2694821
10.1145/881978.881998
10.1109/TWC.2016.2640285
10.1109/TWC.2013.072513.121842
10.1109/T-WC.2008.080037
10.1126/science.1149860
10.1109/SPAWC.2017.8227788
10.1109/4.1000
10.1109/TVT.2015.2442436
10.1109/18.45284
10.1016/j.jnca.2014.07.010
10.1109/CISS.2008.4558703
10.1109/TNET.2016.2607229
10.1109/TWC.2014.040214.131201
10.1504/IJSN.2010.032210
10.1145/2753509.2753514
10.1109/26.803503
10.1109/JIOT.2017.2704605
10.1109/ICSNC.2010.20
10.1109/TBME.2011.2156795
10.1145/2629660
10.1109/TVT.2014.2361284
10.1145/2750858.2805831
10.1109/TNET.2013.2283071
10.1109/TVT.2015.2471085
10.1109/TWC.2006.1611093
10.1023/A:1022869025953
10.1109/LCN.2011.6115508
10.1109/TWC.2006.1611063
10.1109/JSEN.2013.2252526
10.1109/IPSN.2005.1440973
10.1109/LCOMM.2014.011214.132319
10.1109/LCN.2004.72
10.1145/1644893.1644927
10.1109/TVT.2016.2597743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2018.2859433
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 9618
ExternalDocumentID 10_1109_TVT_2018_2859433
8419323
Genre orig-research
GrantInformation_xml – fundername: Singapore National Research Foundation (NRF)
– fundername: Green Buildings Innovation Cluster (GBIC)
– fundername: Building and Construction Authority (BCA)
  grantid: NRF2015ENC-GBICRD001-012
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
RIG
ID FETCH-LOGICAL-c291t-b8c535bab92db2d09f20f5f35c28b537feb1da02492439640430d722fef3e6623
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:13:53 EDT 2025
Wed Oct 01 01:47:49 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Wed Aug 27 02:52:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b8c535bab92db2d09f20f5f35c28b537feb1da02492439640430d722fef3e6623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2751-5114
0000-0002-2644-2582
PQID 2121938060
PQPubID 85454
PageCount 14
ParticipantIDs proquest_journals_2121938060
crossref_citationtrail_10_1109_TVT_2018_2859433
ieee_primary_8419323
crossref_primary_10_1109_TVT_2018_2859433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref14
ref31
ref30
ref33
ref11
(ref5) 2017
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref18
yang (ref19) 0
hu (ref12) 0
(ref36) 2017
ref46
ref24
ref45
ref23
limare (ref41) 2017
ref25
ref20
ref42
ref22
ref44
ref21
ref43
hinks (ref7) 2016
miettinen (ref40) 0; 10
ref28
(ref6) 2016
ref27
ref29
ref8
ref9
ref4
ref3
donelan (ref26) 2008; 319
xu (ref38) 0
References_xml – ident: ref20
  doi: 10.1145/3102301
– year: 2017
  ident: ref36
  publication-title: Channel state information
– ident: ref15
  doi: 10.1109/TVT.2014.2365181
– ident: ref22
  doi: 10.1109/TVT.2017.2694821
– ident: ref46
  doi: 10.1145/881978.881998
– volume: 10
  start-page: 1
  year: 0
  ident: ref40
  article-title: Energy efficiency of mobile clients in cloud computing
  publication-title: in Proc 2nd USENIX Conf Hot Topics Cloud Comput
– ident: ref29
  doi: 10.1109/TWC.2016.2640285
– ident: ref11
  doi: 10.1109/TWC.2013.072513.121842
– ident: ref10
  doi: 10.1109/T-WC.2008.080037
– volume: 319
  start-page: 807
  year: 2008
  ident: ref26
  article-title: Biomechanical energy harvesting: Generating electricity during walking with minimal user effort
  publication-title: Science
  doi: 10.1126/science.1149860
– ident: ref17
  doi: 10.1109/SPAWC.2017.8227788
– ident: ref24
  doi: 10.1109/4.1000
– ident: ref8
  doi: 10.1109/TVT.2015.2442436
– ident: ref35
  doi: 10.1109/18.45284
– ident: ref18
  doi: 10.1016/j.jnca.2014.07.010
– ident: ref13
  doi: 10.1109/CISS.2008.4558703
– ident: ref30
  doi: 10.1109/TNET.2016.2607229
– ident: ref25
  doi: 10.1109/TWC.2014.040214.131201
– ident: ref4
  doi: 10.1504/IJSN.2010.032210
– ident: ref2
  doi: 10.1145/2753509.2753514
– ident: ref33
  doi: 10.1109/26.803503
– ident: ref14
  doi: 10.1109/JIOT.2017.2704605
– start-page: 302
  year: 0
  ident: ref38
  article-title: Impact of data compression on energy consumption of wireless-networked handheld devices
  publication-title: Proc 23rd Intl Conf
– start-page: 1103
  year: 0
  ident: ref19
  article-title: Compression/transmission power allocation in multimedia wireless sensor networks
  publication-title: Proc Int Conf Comput Netw Commun
– year: 2017
  ident: ref5
  publication-title: Cisco Visual Networking Index Global mobile data traffic forecast update 2011-2016
– ident: ref45
  doi: 10.1109/ICSNC.2010.20
– ident: ref9
  doi: 10.1109/TBME.2011.2156795
– ident: ref44
  doi: 10.1145/2629660
– year: 0
  ident: ref12
  article-title: Network aware data transmission with compression
  publication-title: Proc 4th Annu CMU Sympo Comput Syst
– year: 2017
  ident: ref41
  publication-title: Integer and floating-point arithmetic speed vs precision
– ident: ref1
  doi: 10.1109/TVT.2014.2361284
– ident: ref3
  doi: 10.1145/2750858.2805831
– ident: ref23
  doi: 10.1109/TNET.2013.2283071
– ident: ref21
  doi: 10.1109/TVT.2015.2471085
– year: 2016
  ident: ref6
  publication-title: General Battery Information
– ident: ref39
  doi: 10.1109/TWC.2006.1611093
– ident: ref34
  doi: 10.1023/A:1022869025953
– ident: ref42
  doi: 10.1109/LCN.2011.6115508
– ident: ref16
  doi: 10.1109/TWC.2006.1611063
– ident: ref28
  doi: 10.1109/JSEN.2013.2252526
– ident: ref27
  doi: 10.1109/IPSN.2005.1440973
– year: 2016
  ident: ref7
  publication-title: 5 Main Reasons Why Google Glass Failed
– ident: ref37
  doi: 10.1109/LCOMM.2014.011214.132319
– ident: ref43
  doi: 10.1109/LCN.2004.72
– ident: ref31
  doi: 10.1145/1644893.1644927
– ident: ref32
  doi: 10.1109/TVT.2016.2597743
SSID ssj0014491
Score 2.3298512
Snippet Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9605
SubjectTerms Algorithms
Approximation algorithms
Compression
Data communication
Data compression
Data transmission
Electronic devices
energy
Energy conservation
Energy consumption
Energy transmission
Markov processes
Sensors
Speed control
wearable devices
Wearable technology
Wireless communication
Wireless sensor networks
wireless transmission
Title Energy Optimal Wireless Data Transmission for Wearable Devices: A Compression Approach
URI https://ieeexplore.ieee.org/document/8419323
https://www.proquest.com/docview/2121938060
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHliQSOv4kQdbRVshJGAp0C1y_FgoBUG68Os5O2nFS4gtUmzL8vnuPtt33wGcSMG1dDKNJE_KSEiTRSqmeEpxSa5dEhsWeGavb5LLO3E1luMlOFvkwlhrQ_CZ7fjP8JZvnvXMX5V1M-HhBl-G5TTN61ytxYuBEE11vBgVGGHB_EmS5t3R_cjHcGUdT9YmOP_igkJNlR-GOHiX4Tpcz-dVB5U8dmZV2dHv3ygb_zvxDVhrYCbp1ftiE5bsdAtWP5EPbsP9IKT9kVs0Gk_Y1sfBTtDukb6qFAk-DPeAv0wjCGzJA6qET7MifRuMyznpEW9M6jjaKek15OQ7cDccjC4uo6bKQqRZHldRmWnJZanKnJmSGZo7Rp10XGqWlZKnDq25UYFZEMFL4tl4qEkZc9ZxmyB62oXW9Hlq94BwkVKjUe2c48IolTulYp7ElhomUu7a0J0vfKEbCnJfCWNShKMIzQsUVeFFVTSiasPposdLTb_xR9ttv_KLds2it-FwLtui0c-3Ah02_sxoQvd_73UAK37sOmzvEFrV68weIfyoyuOw7z4Ap1rVTw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGg5UNq0IhDAh14qdROvH_vgFgFRaBN6CSm3ldePS0OCYHPh1zP2bqI-EOK20tqy5fHMfLZnvgH4IgXX0sk0kjwpIyFNFqmY4inFJbl2SWxY4JmdXCWja_H9Rt5swbdNLoy1NgSf2Z7_DG_5ZqlX_qqsnwkPN_gb2JZ4qkjrbK3Nm4EQTX28GFUYgcH6UZLm_els6qO4sp6naxOc_-WEQlWV_0xx8C_D9zBZz6wOK_ndW1VlTz_-Q9r42qnvwW4DNMmg3hkfYMsuPsLOH_SDbZhdhMQ_8hPNxi229ZGwc7R85FxVigQvhrvAX6cRhLbkFyqFT7Qi5zaYl1MyIN6c1JG0CzJo6Mk_wfXwYno2ipo6C5FmeVxFZaYll6Uqc2ZKZmjuGHXScalZVkqeOrTnRgVuQYQviefjoSZlzFnHbYL46TO0FsuF3QfCRUqNRsVzjgujVO6UinkSW2qYSLnrQH-98IVuSMh9LYx5EQ4jNC9QVIUXVdGIqgNfNz3uagKOF9q2_cpv2jWL3oHuWrZFo6EPBbps_JnRhB483-sE3o6mk3Exvrz6cQjv_Dh1EF8XWtX9yh4hGKnK47AHnwAG8tig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Optimal+Wireless+Data+Transmission+for+Wearable+Devices%3A+A+Compression+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhang%2C+Wei&rft.au=Fan%2C+Rui&rft.au=Wen%2C+Yonggang&rft.au=Liu%2C+Fang&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=67&rft.issue=10&rft.spage=9605&rft.epage=9618&rft_id=info:doi/10.1109%2FTVT.2018.2859433&rft.externalDocID=8419323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon