Energy Optimal Wireless Data Transmission for Wearable Devices: A Compression Approach
Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data t...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 67; no. 10; pp. 9605 - 9618 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2018.2859433 |
Cover
Abstract | Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient <inline-formula><tex-math notation="LaTeX">(1+\epsilon)</tex-math></inline-formula> approximation algorithm for an arbitrarily small <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use. |
---|---|
AbstractList | Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient <inline-formula><tex-math notation="LaTeX">(1+\epsilon)</tex-math></inline-formula> approximation algorithm for an arbitrarily small <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use. Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient (1 + ϵ) approximation algorithm for an arbitrarily small ϵ, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use. |
Author | Fan, Rui Wen, Yonggang Zhang, Wei Liu, Fang |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-2644-2582 surname: Zhang fullname: Zhang, Wei email: wei.zhang@ieee.org organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Rui surname: Fan fullname: Fan, Rui email: fanrui@shanghaitech.edu.cn organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China – sequence: 3 givenname: Yonggang orcidid: 0000-0002-2751-5114 surname: Wen fullname: Wen, Yonggang email: ygwen@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Fang surname: Liu fullname: Liu, Fang email: fliu@ieee.org organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kM1Lw0AQxRepYFu9C14WPKfuZ5r1Vmr9gEIvsT0um3RWt6RJ3E2F_vduSfHgwdMwzHvzZn4jNKibGhC6pWRCKVEP-TqfMEKzCcukEpxfoCFVXCWKSzVAQxJHiZJCXqFRCLvYCqHoEK0XNfiPI161ndubCm-chwpCwE-mMzj3pg57F4JramwbjzdgvCkqwE_w7UoIj3iG582-9dBrZm3rG1N-XqNLa6oAN-c6Ru_Pi3z-mixXL2_z2TIpmaJdUmSl5LIwhWLbgm2JsoxYabksWVZIPrVQ0K0hTCgmuEoFEZxsp4xZsBzSlPExuu_3xtivA4RO75qDr2OkZpRFABlJSVSRXlX6JgQPVrc-fuuPmhJ9oqcjPX2ip8_0oiX9YyldZ7r4Y-eNq_4z3vVGBwC_OZmItzDOfwAIrX4F |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1016_j_comcom_2020_07_005 crossref_primary_10_1109_JIOT_2021_3091849 crossref_primary_10_1007_s00521_021_06656_6 crossref_primary_10_1016_j_heliyon_2023_e18783 crossref_primary_10_1016_j_comcom_2020_05_039 crossref_primary_10_1360_SSC_2022_0164 crossref_primary_10_3390_s18124422 crossref_primary_10_1109_TCOMM_2019_2919837 crossref_primary_10_3390_electronics11193032 crossref_primary_10_1109_TCOMM_2021_3077948 crossref_primary_10_1109_TCOMM_2020_3022692 |
Cites_doi | 10.1145/3102301 10.1109/TVT.2014.2365181 10.1109/TVT.2017.2694821 10.1145/881978.881998 10.1109/TWC.2016.2640285 10.1109/TWC.2013.072513.121842 10.1109/T-WC.2008.080037 10.1126/science.1149860 10.1109/SPAWC.2017.8227788 10.1109/4.1000 10.1109/TVT.2015.2442436 10.1109/18.45284 10.1016/j.jnca.2014.07.010 10.1109/CISS.2008.4558703 10.1109/TNET.2016.2607229 10.1109/TWC.2014.040214.131201 10.1504/IJSN.2010.032210 10.1145/2753509.2753514 10.1109/26.803503 10.1109/JIOT.2017.2704605 10.1109/ICSNC.2010.20 10.1109/TBME.2011.2156795 10.1145/2629660 10.1109/TVT.2014.2361284 10.1145/2750858.2805831 10.1109/TNET.2013.2283071 10.1109/TVT.2015.2471085 10.1109/TWC.2006.1611093 10.1023/A:1022869025953 10.1109/LCN.2011.6115508 10.1109/TWC.2006.1611063 10.1109/JSEN.2013.2252526 10.1109/IPSN.2005.1440973 10.1109/LCOMM.2014.011214.132319 10.1109/LCN.2004.72 10.1145/1644893.1644927 10.1109/TVT.2016.2597743 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2018.2859433 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 9618 |
ExternalDocumentID | 10_1109_TVT_2018_2859433 8419323 |
Genre | orig-research |
GrantInformation_xml | – fundername: Singapore National Research Foundation (NRF) – fundername: Green Buildings Innovation Cluster (GBIC) – fundername: Building and Construction Authority (BCA) grantid: NRF2015ENC-GBICRD001-012 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M RIG |
ID | FETCH-LOGICAL-c291t-b8c535bab92db2d09f20f5f35c28b537feb1da02492439640430d722fef3e6623 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:13:53 EDT 2025 Wed Oct 01 01:47:49 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Wed Aug 27 02:52:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b8c535bab92db2d09f20f5f35c28b537feb1da02492439640430d722fef3e6623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2751-5114 0000-0002-2644-2582 |
PQID | 2121938060 |
PQPubID | 85454 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2121938060 crossref_citationtrail_10_1109_TVT_2018_2859433 ieee_primary_8419323 crossref_primary_10_1109_TVT_2018_2859433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref37 ref15 ref14 ref31 ref30 ref33 ref11 (ref5) 2017 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref18 yang (ref19) 0 hu (ref12) 0 (ref36) 2017 ref46 ref24 ref45 ref23 limare (ref41) 2017 ref25 ref20 ref42 ref22 ref44 ref21 ref43 hinks (ref7) 2016 miettinen (ref40) 0; 10 ref28 (ref6) 2016 ref27 ref29 ref8 ref9 ref4 ref3 donelan (ref26) 2008; 319 xu (ref38) 0 |
References_xml | – ident: ref20 doi: 10.1145/3102301 – year: 2017 ident: ref36 publication-title: Channel state information – ident: ref15 doi: 10.1109/TVT.2014.2365181 – ident: ref22 doi: 10.1109/TVT.2017.2694821 – ident: ref46 doi: 10.1145/881978.881998 – volume: 10 start-page: 1 year: 0 ident: ref40 article-title: Energy efficiency of mobile clients in cloud computing publication-title: in Proc 2nd USENIX Conf Hot Topics Cloud Comput – ident: ref29 doi: 10.1109/TWC.2016.2640285 – ident: ref11 doi: 10.1109/TWC.2013.072513.121842 – ident: ref10 doi: 10.1109/T-WC.2008.080037 – volume: 319 start-page: 807 year: 2008 ident: ref26 article-title: Biomechanical energy harvesting: Generating electricity during walking with minimal user effort publication-title: Science doi: 10.1126/science.1149860 – ident: ref17 doi: 10.1109/SPAWC.2017.8227788 – ident: ref24 doi: 10.1109/4.1000 – ident: ref8 doi: 10.1109/TVT.2015.2442436 – ident: ref35 doi: 10.1109/18.45284 – ident: ref18 doi: 10.1016/j.jnca.2014.07.010 – ident: ref13 doi: 10.1109/CISS.2008.4558703 – ident: ref30 doi: 10.1109/TNET.2016.2607229 – ident: ref25 doi: 10.1109/TWC.2014.040214.131201 – ident: ref4 doi: 10.1504/IJSN.2010.032210 – ident: ref2 doi: 10.1145/2753509.2753514 – ident: ref33 doi: 10.1109/26.803503 – ident: ref14 doi: 10.1109/JIOT.2017.2704605 – start-page: 302 year: 0 ident: ref38 article-title: Impact of data compression on energy consumption of wireless-networked handheld devices publication-title: Proc 23rd Intl Conf – start-page: 1103 year: 0 ident: ref19 article-title: Compression/transmission power allocation in multimedia wireless sensor networks publication-title: Proc Int Conf Comput Netw Commun – year: 2017 ident: ref5 publication-title: Cisco Visual Networking Index Global mobile data traffic forecast update 2011-2016 – ident: ref45 doi: 10.1109/ICSNC.2010.20 – ident: ref9 doi: 10.1109/TBME.2011.2156795 – ident: ref44 doi: 10.1145/2629660 – year: 0 ident: ref12 article-title: Network aware data transmission with compression publication-title: Proc 4th Annu CMU Sympo Comput Syst – year: 2017 ident: ref41 publication-title: Integer and floating-point arithmetic speed vs precision – ident: ref1 doi: 10.1109/TVT.2014.2361284 – ident: ref3 doi: 10.1145/2750858.2805831 – ident: ref23 doi: 10.1109/TNET.2013.2283071 – ident: ref21 doi: 10.1109/TVT.2015.2471085 – year: 2016 ident: ref6 publication-title: General Battery Information – ident: ref39 doi: 10.1109/TWC.2006.1611093 – ident: ref34 doi: 10.1023/A:1022869025953 – ident: ref42 doi: 10.1109/LCN.2011.6115508 – ident: ref16 doi: 10.1109/TWC.2006.1611063 – ident: ref28 doi: 10.1109/JSEN.2013.2252526 – ident: ref27 doi: 10.1109/IPSN.2005.1440973 – year: 2016 ident: ref7 publication-title: 5 Main Reasons Why Google Glass Failed – ident: ref37 doi: 10.1109/LCOMM.2014.011214.132319 – ident: ref43 doi: 10.1109/LCN.2004.72 – ident: ref31 doi: 10.1145/1644893.1644927 – ident: ref32 doi: 10.1109/TVT.2016.2597743 |
SSID | ssj0014491 |
Score | 2.3298512 |
Snippet | Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9605 |
SubjectTerms | Algorithms Approximation algorithms Compression Data communication Data compression Data transmission Electronic devices energy Energy conservation Energy consumption Energy transmission Markov processes Sensors Speed control wearable devices Wearable technology Wireless communication Wireless sensor networks wireless transmission |
Title | Energy Optimal Wireless Data Transmission for Wearable Devices: A Compression Approach |
URI | https://ieeexplore.ieee.org/document/8419323 https://www.proquest.com/docview/2121938060 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHliQSOv4kQdbRVshJGAp0C1y_FgoBUG68Os5O2nFS4gtUmzL8vnuPtt33wGcSMG1dDKNJE_KSEiTRSqmeEpxSa5dEhsWeGavb5LLO3E1luMlOFvkwlhrQ_CZ7fjP8JZvnvXMX5V1M-HhBl-G5TTN61ytxYuBEE11vBgVGGHB_EmS5t3R_cjHcGUdT9YmOP_igkJNlR-GOHiX4Tpcz-dVB5U8dmZV2dHv3ygb_zvxDVhrYCbp1ftiE5bsdAtWP5EPbsP9IKT9kVs0Gk_Y1sfBTtDukb6qFAk-DPeAv0wjCGzJA6qET7MifRuMyznpEW9M6jjaKek15OQ7cDccjC4uo6bKQqRZHldRmWnJZanKnJmSGZo7Rp10XGqWlZKnDq25UYFZEMFL4tl4qEkZc9ZxmyB62oXW9Hlq94BwkVKjUe2c48IolTulYp7ElhomUu7a0J0vfKEbCnJfCWNShKMIzQsUVeFFVTSiasPposdLTb_xR9ttv_KLds2it-FwLtui0c-3Ah02_sxoQvd_73UAK37sOmzvEFrV68weIfyoyuOw7z4Ap1rVTw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcGg5UNq0IhDAh14qdROvH_vgFgFRaBN6CSm3ldePS0OCYHPh1zP2bqI-EOK20tqy5fHMfLZnvgH4IgXX0sk0kjwpIyFNFqmY4inFJbl2SWxY4JmdXCWja_H9Rt5swbdNLoy1NgSf2Z7_DG_5ZqlX_qqsnwkPN_gb2JZ4qkjrbK3Nm4EQTX28GFUYgcH6UZLm_els6qO4sp6naxOc_-WEQlWV_0xx8C_D9zBZz6wOK_ndW1VlTz_-Q9r42qnvwW4DNMmg3hkfYMsuPsLOH_SDbZhdhMQ_8hPNxi229ZGwc7R85FxVigQvhrvAX6cRhLbkFyqFT7Qi5zaYl1MyIN6c1JG0CzJo6Mk_wfXwYno2ipo6C5FmeVxFZaYll6Uqc2ZKZmjuGHXScalZVkqeOrTnRgVuQYQviefjoSZlzFnHbYL46TO0FsuF3QfCRUqNRsVzjgujVO6UinkSW2qYSLnrQH-98IVuSMh9LYx5EQ4jNC9QVIUXVdGIqgNfNz3uagKOF9q2_cpv2jWL3oHuWrZFo6EPBbps_JnRhB483-sE3o6mk3Exvrz6cQjv_Dh1EF8XWtX9yh4hGKnK47AHnwAG8tig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Optimal+Wireless+Data+Transmission+for+Wearable+Devices%3A+A+Compression+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhang%2C+Wei&rft.au=Fan%2C+Rui&rft.au=Wen%2C+Yonggang&rft.au=Liu%2C+Fang&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=67&rft.issue=10&rft.spage=9605&rft.epage=9618&rft_id=info:doi/10.1109%2FTVT.2018.2859433&rft.externalDocID=8419323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |