Energy Optimal Wireless Data Transmission for Wearable Devices: A Compression Approach

Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 67; no. 10; pp. 9605 - 9618
Main Authors Zhang, Wei, Fan, Rui, Wen, Yonggang, Liu, Fang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2018.2859433

Cover

More Information
Summary:Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient <inline-formula><tex-math notation="LaTeX">(1+\epsilon)</tex-math></inline-formula> approximation algorithm for an arbitrarily small <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2018.2859433