A Low-Latency Object Detection Algorithm for the Edge Devices of IoV Systems

The emergence of edge computing (EC) and intelligent vision-based driver assistance system is of great significance for the prospective development of Internet of Vehicle (IoV). The additional computation capability and extensive network coverage provides energy-limited smart devices with more oppor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 10; pp. 11169 - 11178
Main Authors Dai, Cheng, Liu, Xingang, Chen, Weiting, Lai, Chin-Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2020.3008265

Cover

Abstract The emergence of edge computing (EC) and intelligent vision-based driver assistance system is of great significance for the prospective development of Internet of Vehicle (IoV). The additional computation capability and extensive network coverage provides energy-limited smart devices with more opportunities to enable IoV system for time-sensitive applications. However, when implemented in a vision-based driver assistance system, the transmission of a large amount of redundant data not only causes delay but also severely compromises the accuracy of object detection. In this paper, an improved object detection algorithm based on video key-frame for latency reduction on edge IoV system is proposed. It can significantly improve latency reduction performance at the expense of small detection accuracy. In our proposal, we adopt an important coefficient and frame similarity comparison algorithm to filter redundant frames and achieve key frames for object detection. Then an improved Haar-like feature based classification algorithm is used for object detection under the edge computation model. Finally, a scalable cluster object detection system is implemented as a practical EC case to verify our proposal, and extensive simulations confirm the superiority of the proposed scheme over regular schemes. It can speed up about 84 times with 40% of the similar frames filtered in comparison.
AbstractList The emergence of edge computing (EC) and intelligent vision-based driver assistance system is of great significance for the prospective development of Internet of Vehicle (IoV). The additional computation capability and extensive network coverage provides energy-limited smart devices with more opportunities to enable IoV system for time-sensitive applications. However, when implemented in a vision-based driver assistance system, the transmission of a large amount of redundant data not only causes delay but also severely compromises the accuracy of object detection. In this paper, an improved object detection algorithm based on video key-frame for latency reduction on edge IoV system is proposed. It can significantly improve latency reduction performance at the expense of small detection accuracy. In our proposal, we adopt an important coefficient and frame similarity comparison algorithm to filter redundant frames and achieve key frames for object detection. Then an improved Haar-like feature based classification algorithm is used for object detection under the edge computation model. Finally, a scalable cluster object detection system is implemented as a practical EC case to verify our proposal, and extensive simulations confirm the superiority of the proposed scheme over regular schemes. It can speed up about 84 times with 40% of the similar frames filtered in comparison.
Author Dai, Cheng
Chen, Weiting
Lai, Chin-Feng
Liu, Xingang
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0003-2860-4589
  surname: Dai
  fullname: Dai, Cheng
  email: daichengzyw@gmail.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Xingang
  orcidid: 0000-0003-4881-0216
  surname: Liu
  fullname: Liu, Xingang
  email: hanksliu@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Weiting
  surname: Chen
  fullname: Chen, Weiting
  email: chenwt126@outlook.com
  organization: Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
– sequence: 4
  givenname: Chin-Feng
  orcidid: 0000-0001-7138-0272
  surname: Lai
  fullname: Lai, Chin-Feng
  email: cinfon@ieee.org
  organization: Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
BookMark eNp9kM1rAjEQxUOxULW9F3oJ9Lw2n7vmKNa2woKHWq8hyWZ1RTc2iS3-982i9NBDmcNj4L15w28Aeq1rLQD3GI0wRuJpuVqOCCJoRBEak5xfgT4WVGSCctEDfYTwOBOc8RswCGGbVsYE7oNyAkv3nZUq2tac4EJvrYnw2cYkjWvhZLd2vombPaydh3Fj4axa22T4aowN0NVw7lbw_RSi3YdbcF2rXbB3Fx2Cj5fZcvqWlYvX-XRSZoYIHDPFsBYKUW254qbAQlRak5yl97TS1BCV06ooTKWNQAiRMSM5sYRqVLBa4ZoOweP57sG7z6MNUW7d0bepUhLGc066SS50dhnvQvC2lgff7JU_SYxkx0wmZrJjJi_MUiT_EzFNVB2I6FWz-y_4cA421trfHoFpQQWlPwNceW0
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_JIOT_2023_3297259
crossref_primary_10_1007_s12083_022_01440_2
crossref_primary_10_1007_s11554_021_01071_5
crossref_primary_10_3390_s21113785
crossref_primary_10_1016_j_comnet_2022_108937
crossref_primary_10_1109_JIOT_2023_3340151
crossref_primary_10_1007_s11227_020_03464_y
crossref_primary_10_1109_TITS_2022_3175198
crossref_primary_10_1016_j_asoc_2020_107051
crossref_primary_10_1109_TVT_2022_3175835
crossref_primary_10_1007_s12652_020_02712_6
crossref_primary_10_3390_s22186995
crossref_primary_10_1109_JIOT_2021_3052016
crossref_primary_10_1109_TVT_2021_3061746
crossref_primary_10_3390_electronics10161898
crossref_primary_10_1109_TITS_2022_3194413
crossref_primary_10_3390_app13084982
crossref_primary_10_1109_JIOT_2021_3089204
crossref_primary_10_1109_JIOT_2021_3116316
crossref_primary_10_1109_TSC_2023_3324734
crossref_primary_10_1007_s12083_024_01802_y
crossref_primary_10_1109_JIOT_2025_3527233
crossref_primary_10_3390_math12040558
crossref_primary_10_1016_j_dcan_2022_05_023
crossref_primary_10_1109_TITS_2022_3221975
Cites_doi 10.1109/TVT.2015.2483558
10.1109/TPDS.2014.2381640
10.1109/JIOT.2018.2838584
10.1109/JPROC.2019.2954595
10.1109/MNET.2019.1800221
10.1109/TPAMI.2005.165
10.1109/TVT.2018.2889196
10.3390/rs3081743
10.1016/j.asoc.2019.105820
10.1016/j.vehcom.2013.11.002
10.1109/JSAC.2017.2680938
10.1109/MNET.2019.1800310
10.1109/TMM.2006.876287
10.1109/TITS.2018.2815678
10.1109/TVT.2018.2890726
10.1109/TVT.2018.2790421
10.1109/TNET.2015.2487344
10.1109/TITS.2014.2332472
10.1109/COMST.2019.2943405
10.1109/TVT.2018.2883156
10.1109/TC.2016.2620469
10.1109/JIOT.2018.2875599
10.1109/TMM.2017.2764330
10.1109/JSYST.2014.2298837
10.1109/TII.2014.2300753
10.1016/j.future.2016.11.009
10.1109/JIOT.2019.2905788
10.1109/TCSVT.2003.816521
10.1109/TVT.2018.2796443
10.1109/TC.2018.2818144
10.1109/TITS.2009.2029078
10.1109/JIOT.2018.2876409
10.1109/TSMC.2019.2896323
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2020.3008265
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 11178
ExternalDocumentID 10_1109_TVT_2020_3008265
9137393
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Project
  grantid: 2018YFB17002402
– fundername: Aplied Basic Research Key Programs of Science and Technology Department of Sichuan Province
  grantid: 2018JY0023
– fundername: National Natural Science Foundation of China
  grantid: 61872404
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-a41b9a03be5a5c7199dbb264954bab3c2a63d77cdbc9000284262e23b074fa1f3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:13:37 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Wed Oct 01 02:26:57 EDT 2025
Wed Aug 27 02:31:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a41b9a03be5a5c7199dbb264954bab3c2a63d77cdbc9000284262e23b074fa1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2860-4589
0000-0003-4881-0216
0000-0001-7138-0272
PQID 2456525252
PQPubID 85454
PageCount 10
ParticipantIDs proquest_journals_2456525252
crossref_primary_10_1109_TVT_2020_3008265
crossref_citationtrail_10_1109_TVT_2020_3008265
ieee_primary_9137393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
(ref35) 0
ref19
ref18
rodrigo (ref29) 2018; 78
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/TVT.2015.2483558
– ident: ref28
  doi: 10.1109/TPDS.2014.2381640
– ident: ref7
  doi: 10.1109/JIOT.2018.2838584
– ident: ref10
  doi: 10.1109/JPROC.2019.2954595
– ident: ref6
  doi: 10.1109/MNET.2019.1800221
– ident: ref34
  doi: 10.1109/TPAMI.2005.165
– ident: ref5
  doi: 10.1109/TVT.2018.2889196
– ident: ref15
  doi: 10.3390/rs3081743
– ident: ref17
  doi: 10.1016/j.asoc.2019.105820
– ident: ref11
  doi: 10.1016/j.vehcom.2013.11.002
– ident: ref18
  doi: 10.1109/JSAC.2017.2680938
– ident: ref16
  doi: 10.1109/MNET.2019.1800310
– ident: ref32
  doi: 10.1109/TMM.2006.876287
– ident: ref3
  doi: 10.1109/TITS.2018.2815678
– ident: ref12
  doi: 10.1109/TVT.2018.2890726
– ident: ref27
  doi: 10.1109/TVT.2018.2790421
– ident: ref9
  doi: 10.1109/TNET.2015.2487344
– ident: ref13
  doi: 10.1109/TITS.2014.2332472
– ident: ref4
  doi: 10.1109/COMST.2019.2943405
– ident: ref24
  doi: 10.1109/TVT.2018.2883156
– ident: ref20
  doi: 10.1109/TC.2016.2620469
– ident: ref19
  doi: 10.1109/JIOT.2018.2875599
– ident: ref8
  doi: 10.1109/TMM.2017.2764330
– ident: ref21
  doi: 10.1109/JSYST.2014.2298837
– ident: ref14
  doi: 10.1109/TII.2014.2300753
– volume: 78
  start-page: 680
  year: 2018
  ident: ref29
  article-title: Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.11.009
– year: 0
  ident: ref35
– ident: ref30
  doi: 10.1109/JIOT.2019.2905788
– ident: ref33
  doi: 10.1109/TCSVT.2003.816521
– ident: ref1
  doi: 10.1109/TVT.2018.2796443
– ident: ref23
  doi: 10.1109/TC.2018.2818144
– ident: ref2
  doi: 10.1109/TITS.2009.2029078
– ident: ref31
  doi: 10.1109/JIOT.2018.2875599
– ident: ref26
  doi: 10.1109/JIOT.2018.2876409
– ident: ref25
  doi: 10.1109/TSMC.2019.2896323
SSID ssj0014491
Score 2.4852035
Snippet The emergence of edge computing (EC) and intelligent vision-based driver assistance system is of great significance for the prospective development of Internet...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11169
SubjectTerms Accuracy
Algorithms
Automobile safety
Cloud computing
Computational modeling
Edge computing
Electronic devices
Feature extraction
frame similarity compression
Frames (data processing)
internet of vehicle
latency reduction
Meteorological satellites
Network latency
Object detection
Object recognition
Reduction
Task analysis
Vehicles
Vision
Title A Low-Latency Object Detection Algorithm for the Edge Devices of IoV Systems
URI https://ieeexplore.ieee.org/document/9137393
https://www.proquest.com/docview/2456525252
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLY2TnDgjRgv5cAFiW59Lstxgk0DDbgMxK2K0xQQo0WjE4Jfj5N20wQIoV56cKLITuIvsfMZ4DjyuZtqJR0v1G0nVIo72EHtCKUInsqUu5F5KHx13R7chpf30X0NTudvYbTWNvlMN82vjeUnuZqaq7KW8AJD4FaHOu-0y7da84hBGFbV8TxawAQLZiFJV7RGdyM6CPp0PjUOz7iRBRdka6r82Iitd-mvwdVsXGVSyXNzWmBTfX6jbPzvwNdhtYKZrFvOiw2o6WwTVhbIB7dg2GXD_N0ZSoOaP9gNmhsZdq4Lm5yVse74IZ88FY8vjHAtI5zIesmDJgG7t7A8ZRf5HasYz7fhtt8bnQ2cqraCo3zhFY4MPRTSDVBHMlLcEyJBJHBEqkOJgfJlO0g4VwkqYa_gDHO99gMkyJFKLw12YCnLM70LjDwamTQgOeShFFymyFPVITtHqUKFDWjN1B2rinjc1L8Yx_YA4oqYDBQbA8WVgRpwMm_xWpJu_CG7ZfQ9l6tU3YCDmUXjalW-xTbI65tv7_dW-7Bs-i6T9Q5gqZhM9SGBjgKP7Gz7An3p0o4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2VcoA9sCwFbaGAD1xWIm0-nLo-Vmyrlk3Lpa32FnkcZxdRGlRSIfbX79hJq4pFCOWSw1i2ZmzPs2f8BuBDHAo_N1p5ATd9j2stPByg8aTWBE9VLvzYPhSezfuTJf98HV834OPhLYwxxiWfma79dbH8rNA7e1XWk0FkCdweweOYcx5Xr7UOMQPO6_p4AS1hAgb7oKQve4vVgo6CIZ1QrcuzjuTICbmqKg-2Yudfxqcw24-sSiv51t2V2NV3f5A2_u_Qn8OzGmiyYTUzzqBhNi_g5Ih-sAXJkCXFLy9RFjf_Zl_Q3smwS1O69KwNG65viu3X8vY7I2TLCCmyUXZjSMDtLqzI2bRYsZrz_CUsx6PFp4lXV1fwdCiD0lM8QKn8CE2sYi0CKTNEgkekOlQY6VD1o0wInaGW7hLOctebMEICHbkK8ugVNDfFxpwDI59GRo1IDgVXUqgcRa4HZOk416ixDb29ulNdU4_bChjr1B1BfJmSgVJroLQ2UBsuDi1-VLQb_5BtWX0f5GpVt6Gzt2har8ufqQvzhvZ7_fdW7-HJZDFL0mQ6v3oDT20_VepeB5rldmfeEgQp8Z2befew99Xb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Latency+Object+Detection+Algorithm+for+the+Edge+Devices+of+IoV+Systems&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Dai%2C+Cheng&rft.au=Liu%2C+Xingang&rft.au=Chen%2C+Weiting&rft.au=Lai%2C+Chin-Feng&rft.date=2020-10-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=69&rft.issue=10&rft.spage=11169&rft.epage=11178&rft_id=info:doi/10.1109%2FTVT.2020.3008265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2020_3008265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon