A Low-Latency Object Detection Algorithm for the Edge Devices of IoV Systems

The emergence of edge computing (EC) and intelligent vision-based driver assistance system is of great significance for the prospective development of Internet of Vehicle (IoV). The additional computation capability and extensive network coverage provides energy-limited smart devices with more oppor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 10; pp. 11169 - 11178
Main Authors Dai, Cheng, Liu, Xingang, Chen, Weiting, Lai, Chin-Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2020.3008265

Cover

More Information
Summary:The emergence of edge computing (EC) and intelligent vision-based driver assistance system is of great significance for the prospective development of Internet of Vehicle (IoV). The additional computation capability and extensive network coverage provides energy-limited smart devices with more opportunities to enable IoV system for time-sensitive applications. However, when implemented in a vision-based driver assistance system, the transmission of a large amount of redundant data not only causes delay but also severely compromises the accuracy of object detection. In this paper, an improved object detection algorithm based on video key-frame for latency reduction on edge IoV system is proposed. It can significantly improve latency reduction performance at the expense of small detection accuracy. In our proposal, we adopt an important coefficient and frame similarity comparison algorithm to filter redundant frames and achieve key frames for object detection. Then an improved Haar-like feature based classification algorithm is used for object detection under the edge computation model. Finally, a scalable cluster object detection system is implemented as a practical EC case to verify our proposal, and extensive simulations confirm the superiority of the proposed scheme over regular schemes. It can speed up about 84 times with 40% of the similar frames filtered in comparison.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2020.3008265