Energy Efficient Artificial Noise-Aided Precoding Designs for Secured Visible Light Communication Systems

Physical layer security (PLS) has recently gained a lot of attention in the research and development of visible light communication (VLC). In this article, we study the designs of PLS in VLC systems in the presence of multiple unauthorized users (i.e. eavesdroppers) using artificial noise (AN)-aided...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 20; no. 1; pp. 653 - 666
Main Authors Pham, Thanh V., Pham, Anh T.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2020.3027674

Cover

More Information
Summary:Physical layer security (PLS) has recently gained a lot of attention in the research and development of visible light communication (VLC). In this article, we study the designs of PLS in VLC systems in the presence of multiple unauthorized users (i.e. eavesdroppers) using artificial noise (AN)-aided precoding. The design objective focuses on minimizing the total transmit power subject to specific constraints on the signal-to-interference-plus-noise ratios (SINRs) of the legitimate and unauthorized users. In particular, two design approaches are investigated considering the availability of unauthorized users' channel state information (CSI) at the transmitter. In the case of unknown CSI, the AN is constructed to lie on the null-space of the legitimate user's channel. The design problem is convex, thus, can be effectively solved. When the CSI is available, the design additionally imposes constraints on the maximum allowable unauthorized users' SINRs. The design problem, in this case, is, nevertheless, non-convex. Therefore, instead of finding the optimal solution, we examine two different sub-optimal yet low-complexity approaches to solve the problem, namely: Concave-Convex Procedure (CCP) and Semidefinite Relaxation (SDR). Additionally, robust designs that take into account channel uncertainty are also investigated. Extensive numerical results are shown to demonstrate the feasibility and performance of each design with practical parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.3027674