Optical Intelligent Reflecting Surface for Mixed Dual-Hop FSO and Beamforming-Based RF System in C-RAN
Optical intelligent reflecting surface (IRS) is an emerging and low-cost technology that can establish a stable communication route in free space optical (FSO) transmission environment with obstacles. In this work, optical IRS-aided dual-hop mixed FSO and RF system is first proposed for cloud radio...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 21; no. 10; pp. 8489 - 8506 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1536-1276 1558-2248 |
DOI | 10.1109/TWC.2022.3166756 |
Cover
Summary: | Optical intelligent reflecting surface (IRS) is an emerging and low-cost technology that can establish a stable communication route in free space optical (FSO) transmission environment with obstacles. In this work, optical IRS-aided dual-hop mixed FSO and RF system is first proposed for cloud radio access network (C-RAN). Specifically, polar codes are introduced to combat turbulence and building sway induced fading in FSO link, and transmit beamforming (TBF) technique is designed to achieve optimal data-rate for RF link. Supposing that the IRS-aided FSO link is subject to exponentiated Weibull distribution with geometric and misalignment loss, whereas the RF link experiences the Fisher-Snedecor <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> composite fading, the analytical closed-form outage probability expression is derived in terms of Meijer G and Lauricella multivariate hypergeometric functions with decode-and-forward strategy. Exact closed-form average bit error rate expressions are obtained when the relay of C-RAN adopts single antenna and multiantenna beamforming techniques. On the basis of moment generating function of end-to-end signal-to-noise ratio, the ergodic capacity is obtained in terms of univariate and multivariate Fox H-functions over independent but not identically distributed Fisher-Snedecor <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> fading channels. The correctness of the analytical results is verified through Monte-Carlo simulations. We further provide an asymptotic analysis and discuss the achievable diversity orders. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2022.3166756 |