Multiuser Scheduling for Asymmetric FSO/RF Links in Satellite-UAV-Terrestrial Networks

This letter investigates the multiuser downlink transmission performance of an asymmetric free space optical (FSO)/radio frequency (RF) link. Here, the satellite delivers signal to the unmanned aerial vehicle (UAV) through a FSO link subject to Gamma-Gamma distributed turbulence, while the UAV forwa...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications letters Vol. 9; no. 8; pp. 1235 - 1239
Main Authors Kong, Huaicong, Lin, Min, Zhu, Wei-Ping, Amindavar, Hamidreza, Alouini, Mohamed-Slim
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-2337
2162-2345
DOI10.1109/LWC.2020.2986750

Cover

More Information
Summary:This letter investigates the multiuser downlink transmission performance of an asymmetric free space optical (FSO)/radio frequency (RF) link. Here, the satellite delivers signal to the unmanned aerial vehicle (UAV) through a FSO link subject to Gamma-Gamma distributed turbulence, while the UAV forwards the decoded signal to multiple users through RF links characterzied by the correlated Rayleigh fading channel. By adopting that the selective decode-and-forward (DF) protocol at the UAV, we derive a closed-form expression for ergodic capacity (EC) of the considered system, where the RF link exploits transmit beamforming (BF) based on statistical channel state information (CSI) to obtain better performance than single antenna scenarios in existing works. Then, with the help of the derived EC and the available statistical CSI, a novel proportional fair scheduling (PFS) scheme is proposed. Finally, numerical results are conducted to verify the correctness of the theoretical analysis and the superiority of the proposed scheduling scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2020.2986750