Optimal Design of Resource Element Mapping for Sparse Spreading Non-Orthogonal Multiple Access
We propose a new design of the optimal resource element (RE) mapping patterns to maximize the sum-rate of a sparse spreading non-orthogonal multiple access system. In this system, the grouped users who use the same radio resource have different channel conditions. First, we formulate a sum-rate opti...
Saved in:
| Published in | IEEE wireless communications letters Vol. 7; no. 5; pp. 744 - 747 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-2337 2162-2345 |
| DOI | 10.1109/LWC.2018.2818157 |
Cover
| Summary: | We propose a new design of the optimal resource element (RE) mapping patterns to maximize the sum-rate of a sparse spreading non-orthogonal multiple access system. In this system, the grouped users who use the same radio resource have different channel conditions. First, we formulate a sum-rate optimization problem subject to sparsity and power constraints. To solve this non-trivial optimization problem, we transform it to an equivalent penalized problem by deriving the closed-form penalty parameters. We then convert this problem to a sequence of subproblems using the difference of convex programming and propose an efficient algorithm to find the optimal solution. Numerical results demonstrate that the proposed algorithm achieves a higher sum-rate and a superior block error rate performance than the conventional RE mapping schemes. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2162-2337 2162-2345 |
| DOI: | 10.1109/LWC.2018.2818157 |