Comparison of Bit-Loading DMT and Pre-Equalized DFT-Spread DMT for 2-km Optical Interconnect System

In this paper, we experimentally compared the performance of bit-loading discrete multi-tone (DMT) and pre-equalized discrete-Fourier-transform spread (DFT-Spread) DMT in intensity modulation with direct detection (IM/DD) system for 2-km optical interconnect for the first time. Pre-equalization is a...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 37; no. 10; pp. 2194 - 2200
Main Authors Zou, Dongdong, Chen, Yongchao, Li, Fan, Li, Zibin, Sun, Yidan, Ding, Li, Li, Jianping, Yi, Xingwen, Li, Liangchuan, Li, Zhaohui
Format Journal Article
LanguageEnglish
Published New York IEEE 15.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2019.2899737

Cover

More Information
Summary:In this paper, we experimentally compared the performance of bit-loading discrete multi-tone (DMT) and pre-equalized discrete-Fourier-transform spread (DFT-Spread) DMT in intensity modulation with direct detection (IM/DD) system for 2-km optical interconnect for the first time. Pre-equalization is applied to compensate the high-frequency power fading in wideband communication system. However, it remains to be verified whether zero-forcing (ZF) channel estimation based complete pre-equalization can achieve the best performance for system with serious high frequency fading. In an IM/DD system with 120 Gbit/s data rate, we demonstrated that the bit error rate of DFT-Spread DMT signal with optimized quadratic curve fitting based partial pre-equalization outperforms ZF based complete pre-equalization after 2-km standard single mode fiber (SSMF) transmission. What's more, we experimentally compared the performance of pre-equalized DFT-Spread DMT and Chow-Cioffi-Bingham (CCB) algorithm-based bit loading DMT. The results show that the receiver sensitivity of pre-equalized DFT-Spread DMT is improved by 2.5 dB compared with CCB algorithm-based bit-loading DMT at hard decision forward error correction threshold of 3.8 × 10 -3 after 2-km SSMF transmission.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2019.2899737