Multi-Set Low-Rank Factorizations With Shared and Unshared Components

Low-rank matrix/tensor factorizations play a significant role in science and engineering. An important example is the canonical polyadic decomposition (CPD). There is also a growing interest in multi-set extensions of low-rank matrix/tensor factorizations in which the associated factor matrices are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 68; pp. 5122 - 5137
Main Authors Sorensen, Mikael, Sidiropoulos, Nicholas D.
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2020.3020408

Cover

Abstract Low-rank matrix/tensor factorizations play a significant role in science and engineering. An important example is the canonical polyadic decomposition (CPD). There is also a growing interest in multi-set extensions of low-rank matrix/tensor factorizations in which the associated factor matrices are partially shared. In this paper we propose a more unified framework for multi-set matrix/tensor factorizations. In particular, we propose a multi-set extension of bilinear factorizations subject to monomial equality constraints to the case of shared and unshared factors. The presented framework encompasses (generalized) canonical correlation analysis (CCA) and (coupled) CPD models as special cases. CPD, CCA and hybrid models between them feature interesting uniqueness properties. We derive uniqueness conditions for CCA and multi-set low-rank factorization with partially shared entities. Computationally, we reduce multi-set low-rank factorizations with shared and unshared components into a special CPD problem, which can be solved via a matrix eigenvalue decomposition. Finally, numerical experiments demonstrate the importance of taking the coupling between multi-set low-rank factorizations into account in the actual computation.
AbstractList Low-rank matrix/tensor factorizations play a significant role in science and engineering. An important example is the canonical polyadic decomposition (CPD). There is also a growing interest in multi-set extensions of low-rank matrix/tensor factorizations in which the associated factor matrices are partially shared. In this paper we propose a more unified framework for multi-set matrix/tensor factorizations. In particular, we propose a multi-set extension of bilinear factorizations subject to monomial equality constraints to the case of shared and unshared factors. The presented framework encompasses (generalized) canonical correlation analysis (CCA) and (coupled) CPD models as special cases. CPD, CCA and hybrid models between them feature interesting uniqueness properties. We derive uniqueness conditions for CCA and multi-set low-rank factorization with partially shared entities. Computationally, we reduce multi-set low-rank factorizations with shared and unshared components into a special CPD problem, which can be solved via a matrix eigenvalue decomposition. Finally, numerical experiments demonstrate the importance of taking the coupling between multi-set low-rank factorizations into account in the actual computation.
Author Sorensen, Mikael
Sidiropoulos, Nicholas D.
Author_xml – sequence: 1
  givenname: Mikael
  orcidid: 0000-0003-4337-7417
  surname: Sorensen
  fullname: Sorensen, Mikael
  email: msoe01@gmail.com
  organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
– sequence: 2
  givenname: Nicholas D.
  orcidid: 0000-0002-3385-7911
  surname: Sidiropoulos
  fullname: Sidiropoulos, Nicholas D.
  email: nikos@virginia.edu
  organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
BookMark eNp9UE1LAzEUDFLBWr0LXhY8b83LJtnNUUqrQkWxLXoLaZLSre2mJimiv97ULR48eHkfMPNm3pyiTuMai9AF4D4AFtfTyVOfYIL7RSoUV0eoC4JCjmnJO2nGrMhZVb6eoNMQVhgDpYJ30fBht451PrExG7uP_Fk1b9lI6eh8_aVi7ZqQvdRxmU2WyluTqcZksya0y8BttslEE8MZOl6odbDnh95Ds9FwOrjLx4-394Obca6JgJgzY7UFMle8MAQKphRTmhAjrNXGFnxOLJSlNpyaUglIdsFWZAFMEwZEl0UPXbV3t96972yIcuV2vkmSklDKMasYFwmFW5T2LgRvF3Lr643ynxKw3IclU1hyH5Y8hJUo_A9F1_Hn_-hVvf6PeNkSa2vtr46ACiiD4hvQpXhI
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2024_3510680
crossref_primary_10_1109_TSP_2022_3200215
Cites_doi 10.1007/s11336-004-1168-9
10.1137/18M1206849
10.1016/0003-2670(86)80028-9
10.2307/2334380
10.1002/cem.2900
10.1109/TSP.2017.2690524
10.1109/78.824675
10.1016/j.dsp.2017.06.009
10.1214/12-AOAS597
10.1109/ACSSC.2017.8335436
10.1137/070690729
10.23919/EUSIPCO.2019.8903050
10.1093/acprof:oso/9780198510581.001.0001
10.1137/140956853
10.1137/140956865
10.1186/1471-2105-15-239
10.1137/17M1140790
10.1137/040608830
10.1109/TSP.2004.832022
ESAT-STADIUS, KU Leuven
10.1137/120877258
10.1090/conm/636/12727
10.1109/78.564198
10.1093/biomet/28.3-4.321
10.1007/BF02310791
10.1137/120877234
10.1109/TWC.2020.2980511
10.23919/EUSIPCO.2017.8081286
10.1109/78.502327
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2020.3020408
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 5137
ExternalDocumentID 10_1109_TSP_2020_3020408
9181451
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: ECCS-1608961
– fundername: NSF
  grantid: ECCS-1807660; IIS-1704074
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5dece12ba63d2135aa5ac22d9eecde36b2e177cd64d7a915871e82f15c2512c73
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:07:26 EDT 2025
Wed Oct 01 03:34:34 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Wed Aug 27 02:31:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5dece12ba63d2135aa5ac22d9eecde36b2e177cd64d7a915871e82f15c2512c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4337-7417
0000-0002-3385-7911
PQID 2446058569
PQPubID 85478
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2020_3020408
proquest_journals_2446058569
crossref_citationtrail_10_1109_TSP_2020_3020408
ieee_primary_9181451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref31
cocchi (ref9) 2019
ref33
ref11
harshman (ref19) 1970; 16
ref32
ref10
ref2
ref1
ref17
ref16
sørensen (ref14) 2020
ref18
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
sørensen (ref25) 0
ref4
ref3
ref6
ref5
vervliet (ref30) 0
References_xml – ident: ref17
  doi: 10.1007/s11336-004-1168-9
– ident: ref33
  doi: 10.1137/18M1206849
– year: 2020
  ident: ref14
  article-title: Generalized canonical correlation analysis: A subspace intersection approach
– year: 0
  ident: ref30
  publication-title: Tensorlab v3 0
– ident: ref10
  doi: 10.1016/0003-2670(86)80028-9
– ident: ref13
  doi: 10.2307/2334380
– year: 0
  ident: ref25
  article-title: Bilinear factorizations subject monomial equality constraints via tensor decompositions
  publication-title: submitted for publication
– ident: ref5
  doi: 10.1002/cem.2900
– ident: ref1
  doi: 10.1109/TSP.2017.2690524
– ident: ref3
  doi: 10.1109/78.824675
– ident: ref16
  doi: 10.1016/j.dsp.2017.06.009
– ident: ref11
  doi: 10.1214/12-AOAS597
– ident: ref6
  doi: 10.1109/ACSSC.2017.8335436
– ident: ref32
  doi: 10.1137/070690729
– ident: ref18
  doi: 10.23919/EUSIPCO.2019.8903050
– ident: ref29
  doi: 10.1093/acprof:oso/9780198510581.001.0001
– ident: ref27
  doi: 10.1137/140956853
– ident: ref28
  doi: 10.1137/140956865
– ident: ref7
  doi: 10.1186/1471-2105-15-239
– ident: ref34
  doi: 10.1137/17M1140790
– ident: ref22
  doi: 10.1137/040608830
– ident: ref21
  doi: 10.1109/TSP.2004.832022
– ident: ref4
  doi: ESAT-STADIUS, KU Leuven
– ident: ref24
  doi: 10.1137/120877258
– ident: ref26
  doi: 10.1090/conm/636/12727
– ident: ref31
  doi: 10.1109/78.564198
– ident: ref12
  doi: 10.1093/biomet/28.3-4.321
– ident: ref20
  doi: 10.1007/BF02310791
– volume: 16
  start-page: 1
  year: 1970
  ident: ref19
  article-title: Foundations of the PARAFAC procedure: Models and conditions for an explanatory multimodal factor analysis
  publication-title: UCLA Work Papers Phonetics
– ident: ref23
  doi: 10.1137/120877234
– ident: ref15
  doi: 10.1109/TWC.2020.2980511
– ident: ref8
  doi: 10.23919/EUSIPCO.2017.8081286
– year: 2019
  ident: ref9
  publication-title: Data Fusion Theory Methods and Applications
– ident: ref2
  doi: 10.1109/78.502327
SSID ssj0014496
Score 2.3725321
Snippet Low-rank matrix/tensor factorizations play a significant role in science and engineering. An important example is the canonical polyadic decomposition (CPD)....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5122
SubjectTerms Analytical models
Antenna arrays
Canonical correlation analysis
canonical polyadic decomposition
Correlation
Correlation analysis
coupled decomposition
Decomposition
eigenvalue decomposition
Eigenvalues
Interference
Mathematical analysis
Matrix decomposition
monomial
Tensile stress
tensor
Tensors
Transmitting antennas
Uniqueness
Title Multi-Set Low-Rank Factorizations With Shared and Unshared Components
URI https://ieeexplore.ieee.org/document/9181451
https://www.proquest.com/docview/2446058569
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xSnU_rgi2C2JU3a5lFkQ8SJuA33VtIkRZl04joE_3ov6QdDRXxrIWnDXT5-l7vfHULnClCvBqMaAzTmmKUqxIlIIuwrnlIwJ0jgWPyj--Bmym5nfNZAlzUXxhjjgs9M1z46X75eqJW9KusJOI6Y5UtvhFFQcLVqjwFjrhYXwAUf8yicVS7JvuhNxg9gCFKwTy0T1BaSXDuCXE2VHxuxO12GO2hUjasIKpl3V3nSVZ_fUjb-d-C7aLuEmd5VMS_2UMNk-2hrLflgCw0c9xaPTe7dLT7wo8zm3tBV36momd7TS_7s2ZTORnsy0940WxYvdhdZZDYG4wBNh4PJ9Q0uiypgRQXJMddGGUITGfiaEp9LyaWiVAtjlDZ-kFBDwlDpgOlQCgKiJCaiKeHKIiEV-oeomcEfjpBnnZIG8GCaUsJgm5Sh0GAO-lxHEoAoa6NeJedYlRnHbeGL19hZHn0Rg2Ziq5m41EwbXdQ93opsG3-0bVlB1-1KGbdRp1JlXC7HZQwYxrp_eSCOf-91gjbtt4u7lQ5q5u8rcwpoI0_O3DT7AoKBzuk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED9EH9QHv8X52QdfBLOZNGmXRxHH1E1EN9xbSZMURelEOwT_ei9pO0RFfGshIeEuH7_L3e8O4FAj6jVoVBOExoLwTMcklWmbhFpkDM0JGnkWf_866g755UiMZuB4yoWx1vrgM9t0n96Xb8Z64p7KWhKvI-740nOCcy5KttbUZ8C5r8aFgCEkoh2PaqfkiWwN7m7QFGRooTouqCsl-eUS8lVVfhzF_n7pLEO_nlkZVvLUnBRpU398S9r436mvwFIFNIPTcmWswozN12DxS_rBdTj37FtyZ4ugN34ntyp_Cjq-_k5NzgzuH4uHwCV1tiZQuQmG-Vv5486Rce6iMDZg2DkfnHVJVVaBaCZpQYSx2lKWqig0jIZCKaE0Y0Zaq40No5RZGsfaRNzESlIUJbVtllGhHRbScbgJszmOsAWBc0taRIRZxijHg1LF0qBBGArTVghFeQNatZwTXeUcd6UvnhNve5zIBDWTOM0klWYacDTt8VLm2_ij7boT9LRdJeMG7NaqTKoN-ZYginEOYBHJ7d97HcB8d9DvJb2L66sdWHDjlC8tuzBbvE7sHmKPIt33S-4ThHDSNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Set+Low-Rank+Factorizations+With+Shared+and+Unshared+Components&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Sorensen%2C+Mikael&rft.au=Sidiropoulos%2C+Nicholas+D.&rft.date=2020&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=5122&rft.epage=5137&rft_id=info:doi/10.1109%2FTSP.2020.3020408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_3020408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon