Multi-Set Low-Rank Factorizations With Shared and Unshared Components

Low-rank matrix/tensor factorizations play a significant role in science and engineering. An important example is the canonical polyadic decomposition (CPD). There is also a growing interest in multi-set extensions of low-rank matrix/tensor factorizations in which the associated factor matrices are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 68; pp. 5122 - 5137
Main Authors Sorensen, Mikael, Sidiropoulos, Nicholas D.
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2020.3020408

Cover

More Information
Summary:Low-rank matrix/tensor factorizations play a significant role in science and engineering. An important example is the canonical polyadic decomposition (CPD). There is also a growing interest in multi-set extensions of low-rank matrix/tensor factorizations in which the associated factor matrices are partially shared. In this paper we propose a more unified framework for multi-set matrix/tensor factorizations. In particular, we propose a multi-set extension of bilinear factorizations subject to monomial equality constraints to the case of shared and unshared factors. The presented framework encompasses (generalized) canonical correlation analysis (CCA) and (coupled) CPD models as special cases. CPD, CCA and hybrid models between them feature interesting uniqueness properties. We derive uniqueness conditions for CCA and multi-set low-rank factorization with partially shared entities. Computationally, we reduce multi-set low-rank factorizations with shared and unshared components into a special CPD problem, which can be solved via a matrix eigenvalue decomposition. Finally, numerical experiments demonstrate the importance of taking the coupling between multi-set low-rank factorizations into account in the actual computation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.3020408