A Computationally Efficient Quasi-Centralized DMPC for Back-to-Back Converter PMSG Wind Turbine Systems Without DC-Link Tracking Errors

Quasi-centralized direct model predictive control (QC-DMPC) scheme may serve as an effective alternative for back-to-back power converter in permanent magnet synchronous generator (PMSG) wind turbine systems. However, model errors and imperfect power efficiency lead to evident dc-link voltage tracki...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 63; no. 10; pp. 6160 - 6171
Main Authors Zhang, James-Zhenbin, Tongjing Sun, Fengxiang Wang, Rodriguez, Jose, Kennel, Ralph
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2016.2573768

Cover

More Information
Summary:Quasi-centralized direct model predictive control (QC-DMPC) scheme may serve as an effective alternative for back-to-back power converter in permanent magnet synchronous generator (PMSG) wind turbine systems. However, model errors and imperfect power efficiency lead to evident dc-link voltage tracking offset. This paper proposes a revised quasi-centralized direct model predictive control (RQC-DMPC) scheme for back-to-back converter PMSG wind turbine systems, within which, the dc-link voltage is directly controlled by a grid side predictive controller with a flexibly designed cost function using a revised dynamic reference generation concept. The dc-link voltage steady status tracking errors are eliminated. To reduce the computational efforts of the classical scheme, a computational efficient concept is incorporated into the proposed method. The proposed scheme is implemented on an entirely field programmable gate array-based platform. The effectiveness of the proposed method is verified through experimental data. The dc-link control performance comparison with classical proportional-integration controller-based methods and the QC-DMPC scheme under different scenarios are also experimentally investigated. The results emphasize the improvement of the proposed RQC-DMPC scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2016.2573768