Sparse Channel Estimation for OFDM-Based Underwater Acoustic Systems in Rician Fading With a New OMP-MAP Algorithm
In this paper, a new channel estimation algorithm is proposed that exploits channel sparsity in the time domain for an orthogonal frequency division multiplexing (OFDM)-based underwater acoustical (UWA) communications systems in the presence of Rician fading. A path-based channel model is used, in w...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 67; no. 6; pp. 1550 - 1565 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        15.03.2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2019.2893841 | 
Cover
| Summary: | In this paper, a new channel estimation algorithm is proposed that exploits channel sparsity in the time domain for an orthogonal frequency division multiplexing (OFDM)-based underwater acoustical (UWA) communications systems in the presence of Rician fading. A path-based channel model is used, in which the channel is described by a limited number of paths, each characterized by a delay, Doppler scale, and attenuation factor. The resulting algorithm initially estimates the overall sparse channel tap delays and Doppler shifts using a compressed sensing approach, in the form of the orthogonal matching pursuit (OMP) algorithm. Then, a computationally efficient and novel channel estimation algorithm is developed by combining the OMP and maximum a posteriori probability (MAP) techniques for estimating the sparse complex channel path gains whose prior densities have complex Gaussian distributions with unknown mean and variance vectors, where a computationally efficient maximum likelihood algorithm is proposed for their estimation. Monte Carlo simulation results show that the mean square error and symbol error rate performances of the OMP-MAP algorithm uniformly outperforms the conventional OMP-based channel estimation algorithm, in case of uncoded OFDM-based UWA communications systems. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 1053-587X 1941-0476  | 
| DOI: | 10.1109/TSP.2019.2893841 |