Near-Field Pattern Synthesis for Sparse Focusing Antenna Arrays Based on Bayesian Compressive Sensing and Convex Optimization
An effective method based on Bayesian compressive sensing (BCS) and convex optimization for near-field sparse array synthesis is presented in this paper. An algorithm to generate reference-shaped beams in the near-field region with controllable sidelobe levels is first proposed. Then, the multitask...
Saved in:
| Published in | IEEE transactions on antennas and propagation Vol. 66; no. 10; pp. 5249 - 5257 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-926X 1558-2221 |
| DOI | 10.1109/TAP.2018.2860044 |
Cover
| Summary: | An effective method based on Bayesian compressive sensing (BCS) and convex optimization for near-field sparse array synthesis is presented in this paper. An algorithm to generate reference-shaped beams in the near-field region with controllable sidelobe levels is first proposed. Then, the multitask BC is modified and generalized to synthesize a near-field sparse array radiating a desired near-field pattern with the co-polarization component. After that, a postprocessing of the final array excitation is employed to put constraints on the minimum element spacing to make the sparse layout practicable. The degradation of the near-field pattern is mitigated through reestimating the array excitation by a convex optimization. Three numerical examples show the effectiveness of the proposed method with more than 50% of elements saved compared to the uniformly distributed layout. The comparison to the result obtained by a full-wave simulator FEKO is also presented to demonstrate the validity of this method considering strong antenna mutual couplings. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-926X 1558-2221 |
| DOI: | 10.1109/TAP.2018.2860044 |