A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators with Global Fast Convergence

This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators. First, a fixed-time disturbance observer (FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipu...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 11; no. 3; pp. 661 - 672
Main Authors Zhang, Dan, Hu, Jiabin, Cheng, Jun, Wu, Zheng-Guang, Yan, Huaicheng
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2329-9266
2329-9274
DOI10.1109/JAS.2023.123948

Cover

More Information
Summary:This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators. First, a fixed-time disturbance observer (FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems. Then an adaptive scheme is used and the adaptive FTDO (AFTDO) is developed, so that the priori knowledge of the lumped disturbance is not required. Further, a new non-singular fast terminal sliding mode (NFTSM) surface is designed by using an arctan function, which helps to overcome the singularity problem and enhance the robustness of the system. Based on the estimation of the lumped disturbance by the AFTDO, a fixed-time non-singular fast terminal sliding mode controller (FTNFTSMC) is developed to guarantee the trajectory tracking errors converge to zero within a fixed time. The settling time is independent of the initial state of the system. In addition, the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method. Finally, the fixed-time NFESM (FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers (SMCs) are performed. The comparative results confirm that the FTNFTSMC has superior control performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2023.123948