Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
With the wide application of industrial robots in the field of precision machining, reliability analysis of positioning accuracy becomes increasingly important for industrial robots. Since the industrial robot is a complex nonlinear system, the traditional approximate reliability methods often produ...
Saved in:
Published in | IEEE transactions on reliability Vol. 70; no. 3; pp. 887 - 900 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2020.3001232 |
Cover
Summary: | With the wide application of industrial robots in the field of precision machining, reliability analysis of positioning accuracy becomes increasingly important for industrial robots. Since the industrial robot is a complex nonlinear system, the traditional approximate reliability methods often produce unreliable results in analyzing its positioning accuracy. In order to study the positioning accuracy reliability of industrial robot more efficiently and accurately, a radial basis function network is used to construct the mapping relationship between the uncertain parameters and the position coordinates of the end-effector. Combining with the Monte Carlo simulation method, the positioning accuracy reliability is then evaluated. A novel hybrid learning algorithm for training radial basis function network, which integrates the clustering learning algorithm and the orthogonal least squares learning algorithm, is proposed in this article. Examples are presented to illustrate the high proficiency and reliability of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9529 1558-1721 |
DOI: | 10.1109/TR.2020.3001232 |