A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings

Remaining useful life (RUL) prediction of rolling element bearings plays a pivotal role in reducing costly unplanned maintenance and increasing the reliability, availability, and safety of machines. This paper proposes a hybrid prognostics approach for RUL prediction of rolling element bearings. Fir...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 69; no. 1; pp. 401 - 412
Main Authors Wang, Biao, Lei, Yaguo, Li, Naipeng, Li, Ningbo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9529
1558-1721
DOI10.1109/TR.2018.2882682

Cover

More Information
Summary:Remaining useful life (RUL) prediction of rolling element bearings plays a pivotal role in reducing costly unplanned maintenance and increasing the reliability, availability, and safety of machines. This paper proposes a hybrid prognostics approach for RUL prediction of rolling element bearings. First, degradation data of bearings are sparsely represented using relevance vector machine regressions with different kernel parameters. Then, exponential degradation models coupled with the Fréchet distance are employed to estimate the RUL adaptively. The proposed approach is evaluated using the vibration data from accelerated degradation tests of rolling element bearings and the public PRONOSTIA bearing datasets. Experimental results demonstrate the effectiveness of the proposed approach in improving the accuracy and convergence of RUL prediction of rolling element bearings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9529
1558-1721
DOI:10.1109/TR.2018.2882682