Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network
Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibr...
Saved in:
Published in | IEEE transactions on reliability Vol. 72; no. 2; pp. 692 - 702 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2022.3180273 |
Cover
Abstract | Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibration amplitude spectrum imaging feature extraction method using continuous wavelet transform and image conversion is proposed, which can extract the image features with two-dimensional and eliminate the effect of handcrafted features under low signal-to-noise ratio conditions, different operating conditions, and data segmentation. Then, a novel CDBN with Gaussian distribution is constructed to learn the representative features for bearing fault classification. The proposed method is tested on motor bearing dataset with four and ten classifications. The results have been compared with other methods. The experiment results show that the proposed method has achieved significant improvements and is more effective than the traditional methods. |
---|---|
AbstractList | Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibration amplitude spectrum imaging feature extraction method using continuous wavelet transform and image conversion is proposed, which can extract the image features with two-dimensional and eliminate the effect of handcrafted features under low signal-to-noise ratio conditions, different operating conditions, and data segmentation. Then, a novel CDBN with Gaussian distribution is constructed to learn the representative features for bearing fault classification. The proposed method is tested on motor bearing dataset with four and ten classifications. The results have been compared with other methods. The experiment results show that the proposed method has achieved significant improvements and is more effective than the traditional methods. |
Author | Zhao, Huimin Liu, Jie Deng, Wu Chen, Huayue Li, Yang Chen, Jie Xu, Junjie |
Author_xml | – sequence: 1 givenname: Huimin orcidid: 0000-0002-8479-9539 surname: Zhao fullname: Zhao, Huimin email: hm_zhao1977@126.com organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China – sequence: 2 givenname: Jie surname: Liu fullname: Liu, Jie email: liujie@cheari.com organization: Anhui CQC-CHEARI Technology Company, Ltd., Chuzhou, China – sequence: 3 givenname: Huayue orcidid: 0000-0002-4774-7318 surname: Chen fullname: Chen, Huayue email: sunnyxiaoyue20@cwnu.edu.cn organization: School of Computer Science, China West Normal University, Nanchong, China – sequence: 4 givenname: Jie surname: Chen fullname: Chen, Jie email: 335165991@qq.com organization: Chuzhou Technical Supervision and Testing Center, Chuzhou, China – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang email: liyang@cheari.com organization: Anhui CQC-CHEARI Technology Company, Ltd., Chuzhou, China – sequence: 6 givenname: Junjie orcidid: 0000-0002-1549-693X surname: Xu fullname: Xu, Junjie email: jjxu@cauc.edu.cn organization: College of Computer Science and Technology, Civil Aviation University of China, Tianjin, China – sequence: 7 givenname: Wu orcidid: 0000-0002-6524-6760 surname: Deng fullname: Deng, Wu email: dw7689@163.com organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China |
BookMark | eNp9kE1Lw0AQhhepYFs9e_Cy4DntfqXJHrXVWigKJcVj2DSTsjXdrbubiv_ehBYPHjwMwwvPOwzPAPWMNYDQLSUjSokcZ6sRI4yNOE0JS_gF6tM4TiOaMNpDfUJoGsmYySs08H7XRiFk2kflwgSoa70FE_BMq62xXnu89tps8dSaoE1jG4_f1RFqCDhzyvjKuj1WpsRz1XjfYUdbN0Fbo2o8AzjgR6g1VPgVwpd1H9foslK1h5vzHqL181M2fYmWb_PF9GEZbVgqQ1SwSpLJRJCUxzGVvGAbEJJTXnJglSopKdvEVEEAiGpHiEJIIhMq2KQEyYfo_nT34OxnAz7kO9u49imfs5TRpDUTs5aKT9TGWe8dVPlGB9V9H5zSdU5J3gnNs1XeCc3PQtve-E_v4PReue9_GnenhgaAX1omUqQs5j9MjoJr |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_3390_e24070890 crossref_primary_10_1016_j_measurement_2025_116648 crossref_primary_10_1049_cim2_12064 crossref_primary_10_1088_1361_6501_ac97fd crossref_primary_10_1007_s40430_022_03954_5 crossref_primary_10_1016_j_measurement_2024_114586 crossref_primary_10_1109_ACCESS_2024_3355454 crossref_primary_10_1109_TASE_2023_3293931 crossref_primary_10_3390_electronics12234846 crossref_primary_10_1177_00202940231174405 crossref_primary_10_3390_s22228881 crossref_primary_10_1177_09544062231184791 crossref_primary_10_1080_16583655_2022_2153435 crossref_primary_10_32604_cmc_2023_046762 crossref_primary_10_1109_OJIES_2023_3334429 crossref_primary_10_1109_TTE_2023_3288394 crossref_primary_10_3390_en16135206 crossref_primary_10_1016_j_engappai_2024_108270 crossref_primary_10_3389_fmech_2024_1430542 crossref_primary_10_1109_TIM_2023_3314829 crossref_primary_10_1371_journal_pone_0303977 crossref_primary_10_1088_1361_6501_ad86dc crossref_primary_10_1007_s00500_022_07553_3 crossref_primary_10_1016_j_engappai_2024_108536 crossref_primary_10_61089_aot2023_k0c5b837 crossref_primary_10_1088_1361_6501_aced4e crossref_primary_10_1088_2631_8695_ad79ba crossref_primary_10_1109_TR_2023_3332223 crossref_primary_10_1088_1361_6501_ad1a69 crossref_primary_10_1038_s41598_024_80954_6 crossref_primary_10_1038_s41598_024_79151_2 crossref_primary_10_3390_s22249845 crossref_primary_10_1088_2631_8695_ad0f79 crossref_primary_10_1109_TMECH_2023_3314215 crossref_primary_10_59400_sv2242 crossref_primary_10_1080_0954898X_2022_2157903 crossref_primary_10_3934_mbe_2023117 crossref_primary_10_1177_14759217241243353 crossref_primary_10_1109_TIA_2022_3217107 crossref_primary_10_3390_electronics11213476 crossref_primary_10_1109_TTE_2024_3418382 crossref_primary_10_3390_s23229165 crossref_primary_10_23919_cje_2022_00_358 crossref_primary_10_3390_s22197277 crossref_primary_10_3390_su16135721 crossref_primary_10_1049_itr2_12357 crossref_primary_10_1109_JSEN_2023_3328007 crossref_primary_10_1109_TIM_2023_3322488 crossref_primary_10_1007_s11668_024_01883_0 crossref_primary_10_1109_TR_2024_3371520 crossref_primary_10_1080_19427867_2022_2146868 crossref_primary_10_1016_j_knosys_2025_113277 crossref_primary_10_1049_cit2_12173 crossref_primary_10_1177_14759217241254121 crossref_primary_10_21595_jve_2023_22973 crossref_primary_10_3390_s22186730 crossref_primary_10_1038_s41598_024_81489_6 crossref_primary_10_1016_j_knosys_2024_112787 crossref_primary_10_3390_electronics13020410 crossref_primary_10_1109_TCSII_2024_3374646 crossref_primary_10_1016_j_measurement_2025_117043 crossref_primary_10_1109_TIM_2025_3545703 crossref_primary_10_1016_j_engappai_2023_107605 crossref_primary_10_3390_s24144530 crossref_primary_10_1109_TIA_2024_3471972 crossref_primary_10_1088_1361_6501_ad0ad6 crossref_primary_10_3390_jmse11071273 crossref_primary_10_1177_14759217241229610 crossref_primary_10_1177_16878132241289258 crossref_primary_10_1007_s00170_025_15087_9 crossref_primary_10_1038_s41598_022_19209_1 crossref_primary_10_1515_math_2022_0537 crossref_primary_10_1109_JSEN_2023_3337853 crossref_primary_10_3390_e26121113 crossref_primary_10_3390_systems12070262 crossref_primary_10_1109_JSEN_2024_3354415 crossref_primary_10_1088_1361_6501_aca349 crossref_primary_10_1088_1361_6501_ad2052 crossref_primary_10_1109_ACCESS_2025_3525479 crossref_primary_10_3390_electronics13193946 crossref_primary_10_32604_cmc_2023_046324 crossref_primary_10_1177_14759217241309311 crossref_primary_10_1177_14759217241276019 crossref_primary_10_3390_s23052461 crossref_primary_10_1088_1361_6501_acf3ff crossref_primary_10_1088_1361_6501_acfab3 crossref_primary_10_3390_machines11121078 crossref_primary_10_1016_j_eswa_2024_124697 crossref_primary_10_1109_JSEN_2024_3421229 crossref_primary_10_1109_TR_2023_3335899 crossref_primary_10_1088_1361_6501_ac9a61 crossref_primary_10_1038_s41598_024_78784_7 crossref_primary_10_32604_cmc_2023_038417 crossref_primary_10_1109_JSEN_2024_3445934 crossref_primary_10_1109_TIA_2023_3341059 crossref_primary_10_1109_JSEN_2023_3347248 crossref_primary_10_1038_s41598_024_61324_8 crossref_primary_10_1109_TMECH_2023_3347631 crossref_primary_10_1109_TR_2023_3349205 crossref_primary_10_1109_JSEN_2024_3415713 crossref_primary_10_1109_TIA_2023_3297089 crossref_primary_10_1016_j_ymssp_2025_112432 crossref_primary_10_1016_j_cie_2025_110988 crossref_primary_10_1016_j_knosys_2024_111682 crossref_primary_10_1016_j_jpse_2024_100220 crossref_primary_10_1016_j_ymssp_2025_112430 crossref_primary_10_1016_j_apacoust_2023_109797 crossref_primary_10_3233_JIFS_232737 crossref_primary_10_1177_09596518241233640 crossref_primary_10_1088_1361_665X_ad06e0 crossref_primary_10_3390_electronics12030769 crossref_primary_10_1007_s10489_024_05482_2 crossref_primary_10_3390_s23135875 crossref_primary_10_1109_JIOT_2024_3387328 crossref_primary_10_1016_j_ymssp_2023_111032 crossref_primary_10_3390_s23094289 crossref_primary_10_1088_1361_6501_acab22 crossref_primary_10_3390_app12126240 crossref_primary_10_1017_S0890060423000197 crossref_primary_10_1016_j_neunet_2025_107392 crossref_primary_10_3390_s23041822 crossref_primary_10_3390_math11040945 crossref_primary_10_1080_01431161_2022_2162352 crossref_primary_10_3390_s24237865 crossref_primary_10_1080_10589759_2022_2118747 crossref_primary_10_1109_JSEN_2023_3323674 crossref_primary_10_1016_j_ymssp_2025_112458 crossref_primary_10_1080_23311916_2023_2171574 crossref_primary_10_1515_htmp_2022_0250 crossref_primary_10_1007_s11771_024_5579_6 crossref_primary_10_1142_S021812662450230X |
Cites_doi | 10.1109/ACCESS.2017.2728010 10.1109/TBME.2018.2876068 10.1016/j.ymssp.2015.11.014 10.1109/TIE.2017.2745473 10.1016/j.eswa.2013.12.026 10.1177/1077546318783886 10.1177/1475921721998957 10.1109/TIM.2021.3055802 10.1109/TII.2018.2868687 10.1109/TIM.2017.2669947 10.1016/j.aej.2021.03.013 10.3390/sym11060747 10.1109/TIM.2017.2759418 10.1109/TIE.2018.2868023 10.1016/j.neucom.2018.05.024 10.1016/j.neucom.2015.06.008 10.1016/j.jmsy.2021.11.016 10.1016/j.neucom.2018.10.049 10.1109/TIE.2018.2844805 10.1109/TIM.2022.3159005 10.1016/j.measurement.2019.02.075 10.1177/0954406217740929 10.1088/1361-6501/aa50e7 10.1016/j.isatra.2018.10.011 10.1109/TII.2015.2500098 10.1109/TSMC.2022.3151185 10.1109/TIA.2017.2661250 10.1088/1361-6501/ac2fe8 10.1109/JSEN.2022.3179165 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2022.3180273 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 702 |
ExternalDocumentID | 10_1109_TR_2022_3180273 9794825 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U2133205; 51605068 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Sichuan Province grantid: 2022NSFSC0536 funderid: 10.13039/501100018542 – fundername: Open Project Program of the Traction Power State Key Laboratory of Southwest Jiaotong University grantid: TPL2203 – fundername: Research Foundation for Civil Aviation University of China grantid: 3122022PT02; 2020KYQD123 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c289t-b2f9066408355193b2ce49313d3e2fad10d9312ab0ee0aee044b490971426de93 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Mon Jun 30 08:25:19 EDT 2025 Tue Jul 01 00:49:10 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Wed Aug 27 02:25:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-b2f9066408355193b2ce49313d3e2fad10d9312ab0ee0aee044b490971426de93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4774-7318 0000-0002-6524-6760 0000-0002-8479-9539 0000-0002-1549-693X |
PQID | 2821718052 |
PQPubID | 85456 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2821718052 crossref_primary_10_1109_TR_2022_3180273 ieee_primary_9794825 crossref_citationtrail_10_1109_TR_2022_3180273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-June 2023-6-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 (ref29) 2018 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 li (ref7) 2022; 21 ref25 xia (ref6) 2019; 15 ref20 ref22 ref21 ref28 ref27 ref8 ref9 ref4 ref3 ref5 |
References_xml | – ident: ref18 doi: 10.1109/ACCESS.2017.2728010 – ident: ref26 doi: 10.1109/TBME.2018.2876068 – ident: ref15 doi: 10.1016/j.ymssp.2015.11.014 – ident: ref21 doi: 10.1109/TIE.2017.2745473 – ident: ref13 doi: 10.1016/j.eswa.2013.12.026 – ident: ref12 doi: 10.1177/1077546318783886 – volume: 21 start-page: 339 year: 2022 ident: ref7 article-title: Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system under time-varying speeds publication-title: Struct Health Monit doi: 10.1177/1475921721998957 – ident: ref1 doi: 10.1109/TIM.2021.3055802 – volume: 15 start-page: 3703 year: 2019 ident: ref6 article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2018.2868687 – ident: ref17 doi: 10.1109/TIM.2017.2669947 – ident: ref4 doi: 10.1016/j.aej.2021.03.013 – ident: ref30 doi: 10.3390/sym11060747 – ident: ref20 doi: 10.1109/TIM.2017.2759418 – ident: ref25 doi: 10.1109/TIE.2018.2868023 – ident: ref23 doi: 10.1016/j.neucom.2018.05.024 – ident: ref14 doi: 10.1016/j.neucom.2015.06.008 – year: 2018 ident: ref29 – ident: ref8 doi: 10.1016/j.jmsy.2021.11.016 – ident: ref24 doi: 10.1016/j.neucom.2018.10.049 – ident: ref28 doi: 10.1109/TIE.2018.2844805 – ident: ref9 doi: 10.1109/TIM.2022.3159005 – ident: ref10 doi: 10.1016/j.measurement.2019.02.075 – ident: ref22 doi: 10.1177/0954406217740929 – ident: ref16 doi: 10.1088/1361-6501/aa50e7 – ident: ref27 doi: 10.1016/j.isatra.2018.10.011 – ident: ref3 doi: 10.1109/TII.2015.2500098 – ident: ref2 doi: 10.1109/TSMC.2022.3151185 – ident: ref19 doi: 10.1109/TIA.2017.2661250 – ident: ref5 doi: 10.1088/1361-6501/ac2fe8 – ident: ref11 doi: 10.1109/JSEN.2022.3179165 |
SSID | ssj0014498 |
Score | 2.684668 |
Snippet | Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 692 |
SubjectTerms | Belief networks Classification Continuous wavelet transform Continuous wavelet transform (CWT) Continuous wavelet transforms Convolution Convolutional neural networks Deep learning fault classification Fault diagnosis Feature extraction Gauss convolutional deep belief network (CDBN) image processing Image segmentation Machine learning multiple faults Normal distribution rolling bearings Signal to noise ratio Vibrations Visualization |
Title | Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network |
URI | https://ieeexplore.ieee.org/document/9794825 https://www.proquest.com/docview/2821718052 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKojykgcGBlISx0nrEShQkMqAimCLHPsqIVCKSMLAr-ecuBFPiSFSItmJpbv4vs8-fwdwYOKUwiBqj8CG8oT00aM50HgmNpoIST-MqvWO8U08uhPXD9FDC46aszCIWCWfYc_eVnv5ZqZLu1R2LMl56AULsEBuVp_VanYMhJBu1qUfOOLSyfgEvjye3BIP5Jzo6cCqt3yJQFVJlR_zcBVcLlZgPB9WnVPy1CuLtKffvyk2_nfcq7DsUCY7qd1iDVqYrcPSJ-3BDpirRoyzYMM64e4xZ1UKAbOaVY9ZOStzdq9saYqCTeYIl6nMsEtV5rlt9uZcl742RHxhp0igdspu6uzyDbi7OJ-cjTxXcsHTxLwKL-VTSSBEWGBmsV3KNQoZBqEJkU-VCXxDT1ylPqKv6BIiJQPLfkCR3qAMN6GdzTLcAhbxlPqGcd-gEVoM1EBOrTRlrAaaSE2_C725GRLt9MhtWYznpOIlvkwmt4m1W-Ls1oXDpsNLLcXxd9OOtULTzBmgC7tzOyfuV80T4pwBBWg_4tu_99qBRVtjvs4P24V28VriHiGRIt2vXPADrgzZ6Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB7xKICCN7rl6YKCgiyJ42TX5R0cLI_dAgVBFzn2rIQ4ZRFJrrhfzzjxRjylKyIlkp1Ymonn--zxNwCHJs4oDKL2CGwoT0gfPZoDjWdio4mQ9MKoXu8YjuLBnbh6iB5m4Lg9C4OIdfIZdu1tvZdvJrqyS2UnkpyHXjAL8xT3RdSc1mr3DISQbt6lXzji0gn5BL48SW6JCXJOBLVv9VvexaC6qMqnmbgOL-crMJwOrMkqeepWZdbV_z5oNv7vyFdh2eFM9rNxjDWYwXwdlt6oD26AuWzlOEt21qTcPRasTiJgVrXqMa8mVcHulS1OUbJkinGZyg27UFVR2GZ_nfPS184Qn9kvJFg7ZqMmv3wT7s5_J6cDzxVd8DRxr9LL-FgSDBEWmll0l3GNQoZBaELkY2UC39ATV5mP6Cu6hMjIxLIXUKw3KMMtmMsnOf4AFvGM-oZxz6ARWvRVX46tOGWs-ppoTa8D3akZUu0UyW1hjD9pzUx8mSa3qbVb6uzWgaO2w3MjxvF90w1rhbaZM0AHdqd2Tt3PWqTEOgMK0X7Et7_udQALg2R4k95cjq53YNFWnG-yxXZhrnypcI9wSZnt1-74Cj9s3TY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Diagnosis+Using+Continuous+Wavelet+Transform+and+Gauss+Convolutional+Deep+Belief+Network&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Zhao%2C+Huimin&rft.au=Liu%2C+Jie&rft.au=Chen%2C+Huayue&rft.au=Chen%2C+Jie&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=72&rft.issue=2&rft.spage=692&rft.epage=702&rft_id=info:doi/10.1109%2FTR.2022.3180273&rft.externalDocID=9794825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |