Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network

Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 72; no. 2; pp. 692 - 702
Main Authors Zhao, Huimin, Liu, Jie, Chen, Huayue, Chen, Jie, Li, Yang, Xu, Junjie, Deng, Wu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9529
1558-1721
DOI10.1109/TR.2022.3180273

Cover

Abstract Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibration amplitude spectrum imaging feature extraction method using continuous wavelet transform and image conversion is proposed, which can extract the image features with two-dimensional and eliminate the effect of handcrafted features under low signal-to-noise ratio conditions, different operating conditions, and data segmentation. Then, a novel CDBN with Gaussian distribution is constructed to learn the representative features for bearing fault classification. The proposed method is tested on motor bearing dataset with four and ten classifications. The results have been compared with other methods. The experiment results show that the proposed method has achieved significant improvements and is more effective than the traditional methods.
AbstractList Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibration amplitude spectrum imaging feature extraction method using continuous wavelet transform and image conversion is proposed, which can extract the image features with two-dimensional and eliminate the effect of handcrafted features under low signal-to-noise ratio conditions, different operating conditions, and data segmentation. Then, a novel CDBN with Gaussian distribution is constructed to learn the representative features for bearing fault classification. The proposed method is tested on motor bearing dataset with four and ten classifications. The results have been compared with other methods. The experiment results show that the proposed method has achieved significant improvements and is more effective than the traditional methods.
Author Zhao, Huimin
Liu, Jie
Deng, Wu
Chen, Huayue
Li, Yang
Chen, Jie
Xu, Junjie
Author_xml – sequence: 1
  givenname: Huimin
  orcidid: 0000-0002-8479-9539
  surname: Zhao
  fullname: Zhao, Huimin
  email: hm_zhao1977@126.com
  organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
– sequence: 2
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: liujie@cheari.com
  organization: Anhui CQC-CHEARI Technology Company, Ltd., Chuzhou, China
– sequence: 3
  givenname: Huayue
  orcidid: 0000-0002-4774-7318
  surname: Chen
  fullname: Chen, Huayue
  email: sunnyxiaoyue20@cwnu.edu.cn
  organization: School of Computer Science, China West Normal University, Nanchong, China
– sequence: 4
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  email: 335165991@qq.com
  organization: Chuzhou Technical Supervision and Testing Center, Chuzhou, China
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  email: liyang@cheari.com
  organization: Anhui CQC-CHEARI Technology Company, Ltd., Chuzhou, China
– sequence: 6
  givenname: Junjie
  orcidid: 0000-0002-1549-693X
  surname: Xu
  fullname: Xu, Junjie
  email: jjxu@cauc.edu.cn
  organization: College of Computer Science and Technology, Civil Aviation University of China, Tianjin, China
– sequence: 7
  givenname: Wu
  orcidid: 0000-0002-6524-6760
  surname: Deng
  fullname: Deng, Wu
  email: dw7689@163.com
  organization: College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
BookMark eNp9kE1Lw0AQhhepYFs9e_Cy4DntfqXJHrXVWigKJcVj2DSTsjXdrbubiv_ehBYPHjwMwwvPOwzPAPWMNYDQLSUjSokcZ6sRI4yNOE0JS_gF6tM4TiOaMNpDfUJoGsmYySs08H7XRiFk2kflwgSoa70FE_BMq62xXnu89tps8dSaoE1jG4_f1RFqCDhzyvjKuj1WpsRz1XjfYUdbN0Fbo2o8AzjgR6g1VPgVwpd1H9foslK1h5vzHqL181M2fYmWb_PF9GEZbVgqQ1SwSpLJRJCUxzGVvGAbEJJTXnJglSopKdvEVEEAiGpHiEJIIhMq2KQEyYfo_nT34OxnAz7kO9u49imfs5TRpDUTs5aKT9TGWe8dVPlGB9V9H5zSdU5J3gnNs1XeCc3PQtve-E_v4PReue9_GnenhgaAX1omUqQs5j9MjoJr
CODEN IERQAD
CitedBy_id crossref_primary_10_3390_e24070890
crossref_primary_10_1016_j_measurement_2025_116648
crossref_primary_10_1049_cim2_12064
crossref_primary_10_1088_1361_6501_ac97fd
crossref_primary_10_1007_s40430_022_03954_5
crossref_primary_10_1016_j_measurement_2024_114586
crossref_primary_10_1109_ACCESS_2024_3355454
crossref_primary_10_1109_TASE_2023_3293931
crossref_primary_10_3390_electronics12234846
crossref_primary_10_1177_00202940231174405
crossref_primary_10_3390_s22228881
crossref_primary_10_1177_09544062231184791
crossref_primary_10_1080_16583655_2022_2153435
crossref_primary_10_32604_cmc_2023_046762
crossref_primary_10_1109_OJIES_2023_3334429
crossref_primary_10_1109_TTE_2023_3288394
crossref_primary_10_3390_en16135206
crossref_primary_10_1016_j_engappai_2024_108270
crossref_primary_10_3389_fmech_2024_1430542
crossref_primary_10_1109_TIM_2023_3314829
crossref_primary_10_1371_journal_pone_0303977
crossref_primary_10_1088_1361_6501_ad86dc
crossref_primary_10_1007_s00500_022_07553_3
crossref_primary_10_1016_j_engappai_2024_108536
crossref_primary_10_61089_aot2023_k0c5b837
crossref_primary_10_1088_1361_6501_aced4e
crossref_primary_10_1088_2631_8695_ad79ba
crossref_primary_10_1109_TR_2023_3332223
crossref_primary_10_1088_1361_6501_ad1a69
crossref_primary_10_1038_s41598_024_80954_6
crossref_primary_10_1038_s41598_024_79151_2
crossref_primary_10_3390_s22249845
crossref_primary_10_1088_2631_8695_ad0f79
crossref_primary_10_1109_TMECH_2023_3314215
crossref_primary_10_59400_sv2242
crossref_primary_10_1080_0954898X_2022_2157903
crossref_primary_10_3934_mbe_2023117
crossref_primary_10_1177_14759217241243353
crossref_primary_10_1109_TIA_2022_3217107
crossref_primary_10_3390_electronics11213476
crossref_primary_10_1109_TTE_2024_3418382
crossref_primary_10_3390_s23229165
crossref_primary_10_23919_cje_2022_00_358
crossref_primary_10_3390_s22197277
crossref_primary_10_3390_su16135721
crossref_primary_10_1049_itr2_12357
crossref_primary_10_1109_JSEN_2023_3328007
crossref_primary_10_1109_TIM_2023_3322488
crossref_primary_10_1007_s11668_024_01883_0
crossref_primary_10_1109_TR_2024_3371520
crossref_primary_10_1080_19427867_2022_2146868
crossref_primary_10_1016_j_knosys_2025_113277
crossref_primary_10_1049_cit2_12173
crossref_primary_10_1177_14759217241254121
crossref_primary_10_21595_jve_2023_22973
crossref_primary_10_3390_s22186730
crossref_primary_10_1038_s41598_024_81489_6
crossref_primary_10_1016_j_knosys_2024_112787
crossref_primary_10_3390_electronics13020410
crossref_primary_10_1109_TCSII_2024_3374646
crossref_primary_10_1016_j_measurement_2025_117043
crossref_primary_10_1109_TIM_2025_3545703
crossref_primary_10_1016_j_engappai_2023_107605
crossref_primary_10_3390_s24144530
crossref_primary_10_1109_TIA_2024_3471972
crossref_primary_10_1088_1361_6501_ad0ad6
crossref_primary_10_3390_jmse11071273
crossref_primary_10_1177_14759217241229610
crossref_primary_10_1177_16878132241289258
crossref_primary_10_1007_s00170_025_15087_9
crossref_primary_10_1038_s41598_022_19209_1
crossref_primary_10_1515_math_2022_0537
crossref_primary_10_1109_JSEN_2023_3337853
crossref_primary_10_3390_e26121113
crossref_primary_10_3390_systems12070262
crossref_primary_10_1109_JSEN_2024_3354415
crossref_primary_10_1088_1361_6501_aca349
crossref_primary_10_1088_1361_6501_ad2052
crossref_primary_10_1109_ACCESS_2025_3525479
crossref_primary_10_3390_electronics13193946
crossref_primary_10_32604_cmc_2023_046324
crossref_primary_10_1177_14759217241309311
crossref_primary_10_1177_14759217241276019
crossref_primary_10_3390_s23052461
crossref_primary_10_1088_1361_6501_acf3ff
crossref_primary_10_1088_1361_6501_acfab3
crossref_primary_10_3390_machines11121078
crossref_primary_10_1016_j_eswa_2024_124697
crossref_primary_10_1109_JSEN_2024_3421229
crossref_primary_10_1109_TR_2023_3335899
crossref_primary_10_1088_1361_6501_ac9a61
crossref_primary_10_1038_s41598_024_78784_7
crossref_primary_10_32604_cmc_2023_038417
crossref_primary_10_1109_JSEN_2024_3445934
crossref_primary_10_1109_TIA_2023_3341059
crossref_primary_10_1109_JSEN_2023_3347248
crossref_primary_10_1038_s41598_024_61324_8
crossref_primary_10_1109_TMECH_2023_3347631
crossref_primary_10_1109_TR_2023_3349205
crossref_primary_10_1109_JSEN_2024_3415713
crossref_primary_10_1109_TIA_2023_3297089
crossref_primary_10_1016_j_ymssp_2025_112432
crossref_primary_10_1016_j_cie_2025_110988
crossref_primary_10_1016_j_knosys_2024_111682
crossref_primary_10_1016_j_jpse_2024_100220
crossref_primary_10_1016_j_ymssp_2025_112430
crossref_primary_10_1016_j_apacoust_2023_109797
crossref_primary_10_3233_JIFS_232737
crossref_primary_10_1177_09596518241233640
crossref_primary_10_1088_1361_665X_ad06e0
crossref_primary_10_3390_electronics12030769
crossref_primary_10_1007_s10489_024_05482_2
crossref_primary_10_3390_s23135875
crossref_primary_10_1109_JIOT_2024_3387328
crossref_primary_10_1016_j_ymssp_2023_111032
crossref_primary_10_3390_s23094289
crossref_primary_10_1088_1361_6501_acab22
crossref_primary_10_3390_app12126240
crossref_primary_10_1017_S0890060423000197
crossref_primary_10_1016_j_neunet_2025_107392
crossref_primary_10_3390_s23041822
crossref_primary_10_3390_math11040945
crossref_primary_10_1080_01431161_2022_2162352
crossref_primary_10_3390_s24237865
crossref_primary_10_1080_10589759_2022_2118747
crossref_primary_10_1109_JSEN_2023_3323674
crossref_primary_10_1016_j_ymssp_2025_112458
crossref_primary_10_1080_23311916_2023_2171574
crossref_primary_10_1515_htmp_2022_0250
crossref_primary_10_1007_s11771_024_5579_6
crossref_primary_10_1142_S021812662450230X
Cites_doi 10.1109/ACCESS.2017.2728010
10.1109/TBME.2018.2876068
10.1016/j.ymssp.2015.11.014
10.1109/TIE.2017.2745473
10.1016/j.eswa.2013.12.026
10.1177/1077546318783886
10.1177/1475921721998957
10.1109/TIM.2021.3055802
10.1109/TII.2018.2868687
10.1109/TIM.2017.2669947
10.1016/j.aej.2021.03.013
10.3390/sym11060747
10.1109/TIM.2017.2759418
10.1109/TIE.2018.2868023
10.1016/j.neucom.2018.05.024
10.1016/j.neucom.2015.06.008
10.1016/j.jmsy.2021.11.016
10.1016/j.neucom.2018.10.049
10.1109/TIE.2018.2844805
10.1109/TIM.2022.3159005
10.1016/j.measurement.2019.02.075
10.1177/0954406217740929
10.1088/1361-6501/aa50e7
10.1016/j.isatra.2018.10.011
10.1109/TII.2015.2500098
10.1109/TSMC.2022.3151185
10.1109/TIA.2017.2661250
10.1088/1361-6501/ac2fe8
10.1109/JSEN.2022.3179165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2022.3180273
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 702
ExternalDocumentID 10_1109_TR_2022_3180273
9794825
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U2133205; 51605068
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2022NSFSC0536
  funderid: 10.13039/501100018542
– fundername: Open Project Program of the Traction Power State Key Laboratory of Southwest Jiaotong University
  grantid: TPL2203
– fundername: Research Foundation for Civil Aviation University of China
  grantid: 3122022PT02; 2020KYQD123
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c289t-b2f9066408355193b2ce49313d3e2fad10d9312ab0ee0aee044b490971426de93
IEDL.DBID RIE
ISSN 0018-9529
IngestDate Mon Jun 30 08:25:19 EDT 2025
Tue Jul 01 00:49:10 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Wed Aug 27 02:25:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-b2f9066408355193b2ce49313d3e2fad10d9312ab0ee0aee044b490971426de93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4774-7318
0000-0002-6524-6760
0000-0002-8479-9539
0000-0002-1549-693X
PQID 2821718052
PQPubID 85456
PageCount 11
ParticipantIDs proquest_journals_2821718052
crossref_primary_10_1109_TR_2022_3180273
ieee_primary_9794825
crossref_citationtrail_10_1109_TR_2022_3180273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-June
2023-6-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
(ref29) 2018
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
li (ref7) 2022; 21
ref25
xia (ref6) 2019; 15
ref20
ref22
ref21
ref28
ref27
ref8
ref9
ref4
ref3
ref5
References_xml – ident: ref18
  doi: 10.1109/ACCESS.2017.2728010
– ident: ref26
  doi: 10.1109/TBME.2018.2876068
– ident: ref15
  doi: 10.1016/j.ymssp.2015.11.014
– ident: ref21
  doi: 10.1109/TIE.2017.2745473
– ident: ref13
  doi: 10.1016/j.eswa.2013.12.026
– ident: ref12
  doi: 10.1177/1077546318783886
– volume: 21
  start-page: 339
  year: 2022
  ident: ref7
  article-title: Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system under time-varying speeds
  publication-title: Struct Health Monit
  doi: 10.1177/1475921721998957
– ident: ref1
  doi: 10.1109/TIM.2021.3055802
– volume: 15
  start-page: 3703
  year: 2019
  ident: ref6
  article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2868687
– ident: ref17
  doi: 10.1109/TIM.2017.2669947
– ident: ref4
  doi: 10.1016/j.aej.2021.03.013
– ident: ref30
  doi: 10.3390/sym11060747
– ident: ref20
  doi: 10.1109/TIM.2017.2759418
– ident: ref25
  doi: 10.1109/TIE.2018.2868023
– ident: ref23
  doi: 10.1016/j.neucom.2018.05.024
– ident: ref14
  doi: 10.1016/j.neucom.2015.06.008
– year: 2018
  ident: ref29
– ident: ref8
  doi: 10.1016/j.jmsy.2021.11.016
– ident: ref24
  doi: 10.1016/j.neucom.2018.10.049
– ident: ref28
  doi: 10.1109/TIE.2018.2844805
– ident: ref9
  doi: 10.1109/TIM.2022.3159005
– ident: ref10
  doi: 10.1016/j.measurement.2019.02.075
– ident: ref22
  doi: 10.1177/0954406217740929
– ident: ref16
  doi: 10.1088/1361-6501/aa50e7
– ident: ref27
  doi: 10.1016/j.isatra.2018.10.011
– ident: ref3
  doi: 10.1109/TII.2015.2500098
– ident: ref2
  doi: 10.1109/TSMC.2022.3151185
– ident: ref19
  doi: 10.1109/TIA.2017.2661250
– ident: ref5
  doi: 10.1088/1361-6501/ac2fe8
– ident: ref11
  doi: 10.1109/JSEN.2022.3179165
SSID ssj0014498
Score 2.684668
Snippet Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 692
SubjectTerms Belief networks
Classification
Continuous wavelet transform
Continuous wavelet transform (CWT)
Continuous wavelet transforms
Convolution
Convolutional neural networks
Deep learning
fault classification
Fault diagnosis
Feature extraction
Gauss convolutional deep belief network (CDBN)
image processing
Image segmentation
Machine learning
multiple faults
Normal distribution
rolling bearings
Signal to noise ratio
Vibrations
Visualization
Title Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network
URI https://ieeexplore.ieee.org/document/9794825
https://www.proquest.com/docview/2821718052
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKojykgcGBlISx0nrEShQkMqAimCLHPsqIVCKSMLAr-ecuBFPiSFSItmJpbv4vs8-fwdwYOKUwiBqj8CG8oT00aM50HgmNpoIST-MqvWO8U08uhPXD9FDC46aszCIWCWfYc_eVnv5ZqZLu1R2LMl56AULsEBuVp_VanYMhJBu1qUfOOLSyfgEvjye3BIP5Jzo6cCqt3yJQFVJlR_zcBVcLlZgPB9WnVPy1CuLtKffvyk2_nfcq7DsUCY7qd1iDVqYrcPSJ-3BDpirRoyzYMM64e4xZ1UKAbOaVY9ZOStzdq9saYqCTeYIl6nMsEtV5rlt9uZcl742RHxhp0igdspu6uzyDbi7OJ-cjTxXcsHTxLwKL-VTSSBEWGBmsV3KNQoZBqEJkU-VCXxDT1ylPqKv6BIiJQPLfkCR3qAMN6GdzTLcAhbxlPqGcd-gEVoM1EBOrTRlrAaaSE2_C725GRLt9MhtWYznpOIlvkwmt4m1W-Ls1oXDpsNLLcXxd9OOtULTzBmgC7tzOyfuV80T4pwBBWg_4tu_99qBRVtjvs4P24V28VriHiGRIt2vXPADrgzZ6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB7xKICCN7rl6YKCgiyJ42TX5R0cLI_dAgVBFzn2rIQ4ZRFJrrhfzzjxRjylKyIlkp1Ymonn--zxNwCHJs4oDKL2CGwoT0gfPZoDjWdio4mQ9MKoXu8YjuLBnbh6iB5m4Lg9C4OIdfIZdu1tvZdvJrqyS2UnkpyHXjAL8xT3RdSc1mr3DISQbt6lXzji0gn5BL48SW6JCXJOBLVv9VvexaC6qMqnmbgOL-crMJwOrMkqeepWZdbV_z5oNv7vyFdh2eFM9rNxjDWYwXwdlt6oD26AuWzlOEt21qTcPRasTiJgVrXqMa8mVcHulS1OUbJkinGZyg27UFVR2GZ_nfPS184Qn9kvJFg7ZqMmv3wT7s5_J6cDzxVd8DRxr9LL-FgSDBEWmll0l3GNQoZBaELkY2UC39ATV5mP6Cu6hMjIxLIXUKw3KMMtmMsnOf4AFvGM-oZxz6ARWvRVX46tOGWs-ppoTa8D3akZUu0UyW1hjD9pzUx8mSa3qbVb6uzWgaO2w3MjxvF90w1rhbaZM0AHdqd2Tt3PWqTEOgMK0X7Et7_udQALg2R4k95cjq53YNFWnG-yxXZhrnypcI9wSZnt1-74Cj9s3TY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Diagnosis+Using+Continuous+Wavelet+Transform+and+Gauss+Convolutional+Deep+Belief+Network&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Zhao%2C+Huimin&rft.au=Liu%2C+Jie&rft.au=Chen%2C+Huayue&rft.au=Chen%2C+Jie&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=72&rft.issue=2&rft.spage=692&rft.epage=702&rft_id=info:doi/10.1109%2FTR.2022.3180273&rft.externalDocID=9794825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon