Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network

Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 72; no. 2; pp. 692 - 702
Main Authors Zhao, Huimin, Liu, Jie, Chen, Huayue, Chen, Jie, Li, Yang, Xu, Junjie, Deng, Wu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9529
1558-1721
DOI10.1109/TR.2022.3180273

Cover

More Information
Summary:Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a motor. Deep learning provides a powerful ability to extract the features of raw data automatically. A convolutional deep belief network (CDBN) is an effective deep learning method. In this article, a novel vibration amplitude spectrum imaging feature extraction method using continuous wavelet transform and image conversion is proposed, which can extract the image features with two-dimensional and eliminate the effect of handcrafted features under low signal-to-noise ratio conditions, different operating conditions, and data segmentation. Then, a novel CDBN with Gaussian distribution is constructed to learn the representative features for bearing fault classification. The proposed method is tested on motor bearing dataset with four and ten classifications. The results have been compared with other methods. The experiment results show that the proposed method has achieved significant improvements and is more effective than the traditional methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9529
1558-1721
DOI:10.1109/TR.2022.3180273