Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control
•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Al...
        Saved in:
      
    
          | Published in | Fusion engineering and design Vol. 169; p. 112480 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.08.2021
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-3796 1873-7196  | 
| DOI | 10.1016/j.fusengdes.2021.112480 | 
Cover
| Abstract | •A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card.
In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation. | 
    
|---|---|
| AbstractList | In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation. •A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card. In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.  | 
    
| ArticleNumber | 112480 | 
    
| Author | Gerkšič, Samo Pregelj, Boštjan  | 
    
| Author_xml | – sequence: 1 givenname: Samo surname: Gerkšič fullname: Gerkšič, Samo email: Samo.Gerksic@ijs.si – sequence: 2 givenname: Boštjan orcidid: 0000-0002-7068-663X surname: Pregelj fullname: Pregelj, Boštjan  | 
    
| BookMark | eNqFkFtLAzEQhYNUsF5-gwGft-ayu9k8ltLWgqBIfQ7bZKIp26QmaYv_3q1VX4WBeZhzznC-SzTwwQNCt5SMKKH1_Xpkdwn8m4E0YoTREaWsbMgZGtJG8EJQWQ_QkEhGCi5kfYEuU1oTQkU_Q_Q2c95lKA4hmqLrY_I7nj3Px9htth1swOc2u-BxsHgTDHR4G8E4nd0esA4-x9BhGyJeLKcvOEJy6ft0aLvu2_Arukbntu0S3PzsK_Q6my4nD8Xj03wxGT8WmjUyF1JCVRrOOC0tr4yGRqzKsllxgBWxwlQgtZFU20ZQwQhvqRVNY2glWUVrwfkVujvlbmP42EHKah120fcvFauqsi4rRspeJU4qHUNKEazaRrdp46eiRB2pqrX6o6qOVNWJau8cn5zQl9g7iCppB173UCLorExw_2Z8ASKWhtg | 
    
| Cites_doi | 10.1109/ACCESS.2020.3024098 10.1088/0029-5515/47/9/012 10.1109/TAC.2014.2351991 10.1109/TAC.2011.2176389 10.1016/j.fusengdes.2013.02.021 10.1088/0029-5515/50/2/025020 10.1016/j.conengprac.2013.11.009 10.1016/j.conengprac.2014.08.010 10.1088/0741-3335/52/12/123001 10.1063/1.4886796 10.1088/0741-3335/54/9/094005 10.1088/0741-3335/57/10/104005 10.1063/1.4902126 10.1088/0741-3335/58/12/124002 10.1109/TMAG.2007.915303 10.1016/j.fusengdes.2020.111877 10.1016/j.conengprac.2017.08.002 10.1088/1741-4326/aa8c48 10.1017/S0022377815001403 10.1088/0029-5515/43/6/306 10.1063/1.4989503 10.1134/S1547477115030048 10.1016/j.fusengdes.2018.01.074 10.1007/s10107-012-0629-5 10.1063/1.3110110  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Aug 2021  | 
    
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Aug 2021  | 
    
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M  | 
    
| DOI | 10.1016/j.fusengdes.2021.112480 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | Aerospace Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-7196 | 
    
| ExternalDocumentID | 10_1016_j_fusengdes_2021_112480 S0920379621002568  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH  | 
    
| ID | FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0920-3796 | 
    
| IngestDate | Mon Jul 14 08:17:13 EDT 2025 Thu Oct 16 04:31:08 EDT 2025 Fri Feb 23 02:42:02 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Fast gradient method Plasma magnetic control Quadratic programming FPGA Predictive control  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7068-663X | 
    
| PQID | 2554645204 | 
    
| PQPubID | 2047562 | 
    
| ParticipantIDs | proquest_journals_2554645204 crossref_primary_10_1016_j_fusengdes_2021_112480 elsevier_sciencedirect_doi_10_1016_j_fusengdes_2021_112480  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2021 2021-08-00 20210801  | 
    
| PublicationDateYYYYMMDD | 2021-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Fusion engineering and design | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd  | 
    
| References | Gerkšič, De Tommasi (bib0125) 2013; 88 Berkery, Wang, Sabbagh, Liu, Betti, Guazzotto (bib0025) 2017; 24 Gerkšič, Pregelj, Ariola (bib0130) 2020; 160 Ariola, De Tommasi, Pironti, Villone (bib0075) 2014; 24 Levine (bib0155) 1996 Strait, Bialek, Bogatu, Chance, Chu, Edgell, Garofalo, Jackson, Jensen, Johnson, Kim, La Haye, Navratil, Okabayashi, Reimerdes, Scoville, Turnbull, Walker, the DIII–D Team (bib0045) 2003; 43 Chu, Okabayashi (bib0005) 2010; 52 Liu, Bondeson, Gribov, Polevoi (bib0020) 2004; 44 Strait (bib0010) 2015; 22 Hanson, Bialek, Baruzzo, Bolzonella, Hyatt, Jackson, King, La Haye, Lanctot, Marrelli, Martin, Navratil, Okabayashi, Olofsson, Paz-Soldan, Piovesan, Piron, Piron, Shiraki, Strait, Terranova, Turco, Turnbull, Zanca (bib0030) 2014; 21 Wehner, Lauret, Schuster, Ferron, Holcomb, Luce, Humphreys, Walker, Penaflor, Johnson (bib0120) 2016 Sabbagh, Berkery, Bell, Bialek, Gerhardt, Menard, Betti, Gates, Hu, Katsuro-Hopkins, LeBlanc, Levinton, Manickam, Tritz, Yuh (bib0050) 2010; 50 Richter, Jones, Morari (bib0110) 2012; 57 Gerkšič, Pregelj, Perne (bib0140) 2018 Pustovitov (bib0015) 2015; 81 Numan, Phillips, Puddy, Falkner (bib0135) 2020; 8 Giselsson (bib0100) 2014; 47 Katsuro-Hopkins, Bialek, Maurer, Navratil (bib0055) 2007; 47 Amoskov, Belyakov, Gribov, Lamzin, Maximenkova, Sytchevsky (bib0070) 2015; 12 Nesterov (bib0160) 2013; 140 Albanese, Liu, Portone, Rubinacci, Villone (bib0060) 2008; 44 Xilinx (bib0165) 2020 Jerez, Goulart, Richter, Constantinides, Kerrigan, Morari (bib0095) 2014; 59 Hanson, De Bono, Levesque, Mauel, Maurer, Navratil, Sunn Pedersen, Shiraki, James (bib0040) 2009; 16 Gerkšič, Pregelj, Perne, Ariola, De Tommasi, Pironti (bib0105) 2018; 129 Clement, Hanson, Bialek, Navratil (bib0065) 2017; 68 Ariola, Pironti (bib0080) 2016 Setiadi, Brunsell, Frassinetti (bib0085) 2015; 57 Olofsson, Brunsell, Drake, Frassinetti (bib0035) 2012; 54 Setiadi, Brunsell, Frassinetti (bib0090) 2016; 58 Maljaars, Felici, Blanken, Galperti, Sauter, de Baar, Carpanese, Goodman, Kim, Kim, Kong, Mavkov, Merle, Moret, Nouailletas, Scheffer, Teplukhina, Vu, The EUROfusion MST1-team, The TCV-team (bib0115) 2017; 57 Peyrl, Zanarini, Besselmann, Liu, Boéchat (bib0150) 2014; 33 Hartley, Maciejowski (bib0145) 2013 Katsuro-Hopkins (10.1016/j.fusengdes.2021.112480_bib0055) 2007; 47 Albanese (10.1016/j.fusengdes.2021.112480_bib0060) 2008; 44 Gerkšič (10.1016/j.fusengdes.2021.112480_bib0105) 2018; 129 Olofsson (10.1016/j.fusengdes.2021.112480_bib0035) 2012; 54 Ariola (10.1016/j.fusengdes.2021.112480_bib0080) 2016 Richter (10.1016/j.fusengdes.2021.112480_bib0110) 2012; 57 Setiadi (10.1016/j.fusengdes.2021.112480_bib0085) 2015; 57 Gerkšič (10.1016/j.fusengdes.2021.112480_bib0125) 2013; 88 Wehner (10.1016/j.fusengdes.2021.112480_bib0120) 2016 Maljaars (10.1016/j.fusengdes.2021.112480_bib0115) 2017; 57 Strait (10.1016/j.fusengdes.2021.112480_bib0045) 2003; 43 Gerkšič (10.1016/j.fusengdes.2021.112480_bib0140) 2018 Amoskov (10.1016/j.fusengdes.2021.112480_bib0070) 2015; 12 Strait (10.1016/j.fusengdes.2021.112480_bib0010) 2015; 22 Pustovitov (10.1016/j.fusengdes.2021.112480_bib0015) 2015; 81 Gerkšič (10.1016/j.fusengdes.2021.112480_bib0130) 2020; 160 Ariola (10.1016/j.fusengdes.2021.112480_bib0075) 2014; 24 Jerez (10.1016/j.fusengdes.2021.112480_bib0095) 2014; 59 Hanson (10.1016/j.fusengdes.2021.112480_bib0030) 2014; 21 Levine (10.1016/j.fusengdes.2021.112480_bib0155) 1996 Nesterov (10.1016/j.fusengdes.2021.112480_bib0160) 2013; 140 Xilinx (10.1016/j.fusengdes.2021.112480_bib0165) 2020 Sabbagh (10.1016/j.fusengdes.2021.112480_bib0050) 2010; 50 Peyrl (10.1016/j.fusengdes.2021.112480_bib0150) 2014; 33 Hartley (10.1016/j.fusengdes.2021.112480_bib0145) 2013 Chu (10.1016/j.fusengdes.2021.112480_bib0005) 2010; 52 Hanson (10.1016/j.fusengdes.2021.112480_bib0040) 2009; 16 Numan (10.1016/j.fusengdes.2021.112480_bib0135) 2020; 8 Giselsson (10.1016/j.fusengdes.2021.112480_bib0100) 2014; 47 Berkery (10.1016/j.fusengdes.2021.112480_bib0025) 2017; 24 Setiadi (10.1016/j.fusengdes.2021.112480_bib0090) 2016; 58 Liu (10.1016/j.fusengdes.2021.112480_bib0020) 2004; 44 Clement (10.1016/j.fusengdes.2021.112480_bib0065) 2017; 68  | 
    
| References_xml | – volume: 50 year: 2010 ident: bib0050 article-title: Advances in global MHD mode stabilization research on NSTX publication-title: Nucl. Fusion – year: 2016 ident: bib0120 article-title: Predictive control of the tokamak q profile to facilitate reproducibility of high-q publication-title: 2016 IEEE Conference on Control Applications (CCA) – year: 2016 ident: bib0080 article-title: Control of the resistive wall modes for the ITER tokamak publication-title: Magnetic Control of Tokamak Plasmas – volume: 43 year: 2003 ident: bib0045 article-title: Resistive wall stabilization of high-beta plasmas in DIII–D publication-title: Nucl. Fusion – volume: 57 year: 2015 ident: bib0085 article-title: Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R publication-title: Plasma Phys. Control. Fusion – volume: 47 year: 2007 ident: bib0055 article-title: Enhanced ITER resistive wall mode feedback performance using optimal control techniques publication-title: Nucl. Fusion – volume: 57 year: 2012 ident: bib0110 article-title: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method publication-title: IEEE Trans. Automat. Contr. – start-page: 1971 year: 2013 end-page: 1976 ident: bib0145 article-title: Graphical FPGA design for a predictive controller with application to spacecraft rendezvous publication-title: 52nd IEEE Conference on Decision and Control – volume: 22 year: 2015 ident: bib0010 article-title: Magnetic control of magnetohydrodynamic instabilities in tokamaks publication-title: Phys. Plasmas – volume: 129 year: 2018 ident: bib0105 article-title: Model predictive control of ITER plasma current and shape using singular-value decomposition publication-title: Fusion Eng. Des. – year: 2020 ident: bib0165 article-title: Vitis Unified Software Platform Documentation – year: 2018 ident: bib0140 article-title: FPGA acceleration of model predictive control for ITER plasma current and shape control publication-title: 21st IEEE NPSS Real Time Conference – volume: 58 year: 2016 ident: bib0090 article-title: Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R publication-title: Plasma Phys. Control. Fusion – volume: 54 year: 2012 ident: bib0035 article-title: A first attempt at few coils and low-coverage resistive wall mode stabilization of EXTRAP T2R publication-title: Plasma Phys. Control. Fusion – volume: 33 year: 2014 ident: bib0150 article-title: Parallel implementations of the fast gradient method for high-speed MPC publication-title: Control Eng. Pract. – volume: 160 year: 2020 ident: bib0130 article-title: Model predictive control of resistive wall mode for ITER publication-title: Fusion Eng. Des. – volume: 47 year: 2014 ident: bib0100 article-title: Improved fast dual gradient methods for embedded model predictive control publication-title: IFAC Proceedings – volume: 16 year: 2009 ident: bib0040 article-title: A Kalman filter for feedback control of rotating external kink instabilities in the presence of noise publication-title: Phys. Plasmas – volume: 12 year: 2015 ident: bib0070 article-title: Optimization of currents in ITER correction coils publication-title: Phys. Part. Nucl. Lett. – volume: 24 year: 2014 ident: bib0075 article-title: Control of resistive wall modes in tokamak plasmas publication-title: Control Eng. Pract. – year: 1996 ident: bib0155 article-title: The Control Handbook – volume: 8 year: 2020 ident: bib0135 article-title: Towards automatic high-level code deployment on reconfigurable platforms: a survey of high-level synthesis tools and toolchains publication-title: IEEE Access – volume: 57 year: 2017 ident: bib0115 article-title: Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller publication-title: Nucl. Fusion – volume: 68 year: 2017 ident: bib0065 article-title: GPU-based optimal control for RWM feedback in tokamaks publication-title: Control Eng. Pract. – volume: 59 year: 2014 ident: bib0095 article-title: Embedded online optimization for model predictive control at megahertz rates publication-title: IEEE Trans. Automat. Contr. – volume: 52 year: 2010 ident: bib0005 article-title: Stabilization of the external kink and the resistive wall mode publication-title: Plasma Phys. Control. Fusion – volume: 21 year: 2014 ident: bib0030 article-title: Feedback-assisted extension of the tokamak operating space to low safety factor publication-title: Phys. Plasmas – volume: 81 year: 2015 ident: bib0015 article-title: Plasma stability theory including the resistive wall effects publication-title: J. Plasma Phys. – volume: 44 year: 2008 ident: bib0060 article-title: Coupling between a 3-D integral eddy current formulation and a linearized MHD model for the analysis of resistive wall modes publication-title: IEEE Trans. Magnet. – volume: 88 year: 2013 ident: bib0125 article-title: Vertical stabilization of ITER plasma using explicit model predictive control publication-title: Fusion Eng. Des. – volume: 44 year: 2004 ident: bib0020 article-title: Stabilization of resistive wall modes in ITER by active feedback and toroidal rotation publication-title: Nucl. Fusion – volume: 140 year: 2013 ident: bib0160 article-title: Gradient methods for minimizing composite functions publication-title: Math. Program. – volume: 24 year: 2017 ident: bib0025 article-title: Application of benchmarked kinetic resistive wall mode stability codes to ITER, including additional physics publication-title: Phys. Plasmas – volume: 47 year: 2014 ident: 10.1016/j.fusengdes.2021.112480_bib0100 article-title: Improved fast dual gradient methods for embedded model predictive control publication-title: IFAC Proceedings – volume: 8 year: 2020 ident: 10.1016/j.fusengdes.2021.112480_bib0135 article-title: Towards automatic high-level code deployment on reconfigurable platforms: a survey of high-level synthesis tools and toolchains publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024098 – volume: 47 year: 2007 ident: 10.1016/j.fusengdes.2021.112480_bib0055 article-title: Enhanced ITER resistive wall mode feedback performance using optimal control techniques publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/9/012 – volume: 59 year: 2014 ident: 10.1016/j.fusengdes.2021.112480_bib0095 article-title: Embedded online optimization for model predictive control at megahertz rates publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2014.2351991 – year: 2018 ident: 10.1016/j.fusengdes.2021.112480_bib0140 article-title: FPGA acceleration of model predictive control for ITER plasma current and shape control – volume: 57 year: 2012 ident: 10.1016/j.fusengdes.2021.112480_bib0110 article-title: Computational complexity certification for real-time MPC with input constraints based on the fast gradient method publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2011.2176389 – volume: 88 year: 2013 ident: 10.1016/j.fusengdes.2021.112480_bib0125 article-title: Vertical stabilization of ITER plasma using explicit model predictive control publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2013.02.021 – volume: 50 year: 2010 ident: 10.1016/j.fusengdes.2021.112480_bib0050 article-title: Advances in global MHD mode stabilization research on NSTX publication-title: Nucl. Fusion doi: 10.1088/0029-5515/50/2/025020 – year: 2020 ident: 10.1016/j.fusengdes.2021.112480_bib0165 – volume: 24 year: 2014 ident: 10.1016/j.fusengdes.2021.112480_bib0075 article-title: Control of resistive wall modes in tokamak plasmas publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2013.11.009 – volume: 33 year: 2014 ident: 10.1016/j.fusengdes.2021.112480_bib0150 article-title: Parallel implementations of the fast gradient method for high-speed MPC publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2014.08.010 – year: 2016 ident: 10.1016/j.fusengdes.2021.112480_bib0120 article-title: Predictive control of the tokamak q profile to facilitate reproducibility of high-qmin steady-state scenarios at DIII-D – start-page: 1971 year: 2013 ident: 10.1016/j.fusengdes.2021.112480_bib0145 article-title: Graphical FPGA design for a predictive controller with application to spacecraft rendezvous – volume: 52 year: 2010 ident: 10.1016/j.fusengdes.2021.112480_bib0005 article-title: Stabilization of the external kink and the resistive wall mode publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/52/12/123001 – volume: 21 year: 2014 ident: 10.1016/j.fusengdes.2021.112480_bib0030 article-title: Feedback-assisted extension of the tokamak operating space to low safety factor publication-title: Phys. Plasmas doi: 10.1063/1.4886796 – volume: 54 year: 2012 ident: 10.1016/j.fusengdes.2021.112480_bib0035 article-title: A first attempt at few coils and low-coverage resistive wall mode stabilization of EXTRAP T2R publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/54/9/094005 – volume: 57 year: 2015 ident: 10.1016/j.fusengdes.2021.112480_bib0085 article-title: Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/57/10/104005 – volume: 22 year: 2015 ident: 10.1016/j.fusengdes.2021.112480_bib0010 article-title: Magnetic control of magnetohydrodynamic instabilities in tokamaks publication-title: Phys. Plasmas doi: 10.1063/1.4902126 – volume: 58 year: 2016 ident: 10.1016/j.fusengdes.2021.112480_bib0090 article-title: Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/58/12/124002 – volume: 44 year: 2008 ident: 10.1016/j.fusengdes.2021.112480_bib0060 article-title: Coupling between a 3-D integral eddy current formulation and a linearized MHD model for the analysis of resistive wall modes publication-title: IEEE Trans. Magnet. doi: 10.1109/TMAG.2007.915303 – volume: 160 year: 2020 ident: 10.1016/j.fusengdes.2021.112480_bib0130 article-title: Model predictive control of resistive wall mode for ITER publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.111877 – volume: 68 year: 2017 ident: 10.1016/j.fusengdes.2021.112480_bib0065 article-title: GPU-based optimal control for RWM feedback in tokamaks publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2017.08.002 – volume: 57 year: 2017 ident: 10.1016/j.fusengdes.2021.112480_bib0115 article-title: Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa8c48 – volume: 81 year: 2015 ident: 10.1016/j.fusengdes.2021.112480_bib0015 article-title: Plasma stability theory including the resistive wall effects publication-title: J. Plasma Phys. doi: 10.1017/S0022377815001403 – volume: 43 year: 2003 ident: 10.1016/j.fusengdes.2021.112480_bib0045 article-title: Resistive wall stabilization of high-beta plasmas in DIII–D publication-title: Nucl. Fusion doi: 10.1088/0029-5515/43/6/306 – volume: 24 year: 2017 ident: 10.1016/j.fusengdes.2021.112480_bib0025 article-title: Application of benchmarked kinetic resistive wall mode stability codes to ITER, including additional physics publication-title: Phys. Plasmas doi: 10.1063/1.4989503 – volume: 12 year: 2015 ident: 10.1016/j.fusengdes.2021.112480_bib0070 article-title: Optimization of currents in ITER correction coils publication-title: Phys. Part. Nucl. Lett. doi: 10.1134/S1547477115030048 – volume: 129 year: 2018 ident: 10.1016/j.fusengdes.2021.112480_bib0105 article-title: Model predictive control of ITER plasma current and shape using singular-value decomposition publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2018.01.074 – volume: 140 year: 2013 ident: 10.1016/j.fusengdes.2021.112480_bib0160 article-title: Gradient methods for minimizing composite functions publication-title: Math. Program. doi: 10.1007/s10107-012-0629-5 – year: 1996 ident: 10.1016/j.fusengdes.2021.112480_bib0155 – volume: 44 year: 2004 ident: 10.1016/j.fusengdes.2021.112480_bib0020 article-title: Stabilization of resistive wall modes in ITER by active feedback and toroidal rotation publication-title: Nucl. Fusion – year: 2016 ident: 10.1016/j.fusengdes.2021.112480_bib0080 article-title: Control of the resistive wall modes for the ITER tokamak – volume: 16 year: 2009 ident: 10.1016/j.fusengdes.2021.112480_bib0040 article-title: A Kalman filter for feedback control of rotating external kink instabilities in the presence of noise publication-title: Phys. Plasmas doi: 10.1063/1.3110110  | 
    
| SSID | ssj0017017 | 
    
| Score | 2.2893143 | 
    
| Snippet | •A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic... In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 112480 | 
    
| SubjectTerms | Active control Algorithms Control algorithms Fast gradient method Feedback control Field programmable gate arrays FPGA Optimization Personal computers Plasma magnetic control Plasma pressure Predictive control Quadratic programming Tokamak devices  | 
    
| Title | Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control | 
    
| URI | https://dx.doi.org/10.1016/j.fusengdes.2021.112480 https://www.proquest.com/docview/2554645204  | 
    
| Volume | 169 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 0920-3796 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 0920-3796 databaseCode: ACRLP dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 0920-3796 databaseCode: AIKHN dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 0920-3796 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 0920-3796 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGK1lj14jd0km2zjrRRjVSyiFnoL2VeN1LaUSm_-dmfyKFYEDx6T3Q1hJvvNTPabGUIuAPHAzNvAUValDg8Ed6R1YV9plmqX-WlHYaLwwyDsD_ndKBjVSK_KhUFaZYn9BabnaF3eaZfSbM-zrP3MIo_5Igo9NzfcmPDLucAuBpefa5oHlhvPU6YjzBSG2RscL4u_OcbaYN1uz8V0Go71IX-3UD-wOjdA8R7ZLT1H2i1ebp_UzPSA7HyrJ3hIxnGGLqSzgojSwRYpy1caP950afZe0cRRD3Rmad4Bh84XeE6DiEdLzjoFJ5YCnD1RiMNx_8PQKp1M8gXVpCMyjK9fen2n7KTgKAiolk4UmYBrH3w5bv1AK9MREuIy6RsjmRU6MJHSkasshE94Lpu6FkJjDa4OuD-h8P1jUp_OpuaEUKZTpYXyPFczLkUksdyk9W3qydDTjDUIq6SXzIuCGUnFJHtL1gJPUOBJIfAGuaqknGzoPgFY_3txs9JLUm4_GEfuHQ88xk__8-wzso1XBd-vSerLxYc5Bx9kKVv5R9YiW93b-_7gC7dN3MU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RlR1D14rWzbbUu9EWJFBWIUEm6bdh-IQSAEw83f7kwfRIyJB6_d3aaZ3f3mm-43s4RcAeKBmzeeJY2MLe4F3EqMDftKsVjZzI3rEhOFO12_1ecPA29QIs0iFwZllTn2Z5ieonX-pJZbszYbjWovLHSYG4S-Y6eOu75BNrnnBBiBXX-udB5YbzzNmQ4xVRi6r4m8DP7nGCqNhbsdG_NpOBaI_N1F_QDr1ANFe2Q3p460kX3dPinpyQHZ-VZQ8JAMoxFySGsJIaWFd6QsXmn0dNego_dCJ44TQaeGplfg0NkcD2oQ8mguWqfAYing2TOFQBwBAJqW8XicDig6HZF-dNtrtqz8KgVLQkS1sMJQe1y5QOa4cT0ldT1IIDBLXK0TZgLl6VCq0JYG4ic8mI1tA7GxAq4D_McPXPeYlCfTiT4hlKlYqkA6jq0YT4IwwXqTxjWxk_iOYqxCWGE9McsqZohCSvYmVgYXaHCRGbxCbgori7XJF4Drfw-uFvMi8v0H7Si-g9XA-Ol_3n1Jtlq9Tlu077uPZ2QbWzLxX5WUF_MPfQ6EZJFcpAvuC_Dy3lo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-word-length+FPGA+implementation+of+model+predictive+control+for+ITER+resistive+wall+mode+control&rft.jtitle=Fusion+engineering+and+design&rft.au=Gerk%C5%A1i%C4%8D%2C+Samo&rft.au=Pregelj%2C+Bo%C5%A1tjan&rft.date=2021-08-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0920-3796&rft.eissn=1873-7196&rft.volume=169&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fusengdes.2021.112480&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon |