Learning temporal clusters with synaptic facilitation and lateral inhibition
Short-term synaptic plasticity has been proposed as a way for cortical neurons to process temporal information. We present a model network that uses short-term plasticity to implement a temporal clustering algorithm. The model's facilitory synapses learn temporal signals drawn from mixtures of...
        Saved in:
      
    
          | Published in | Neurocomputing (Amsterdam) Vol. 65; pp. 877 - 884 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.06.2005
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-2312 1872-8286  | 
| DOI | 10.1016/j.neucom.2004.10.086 | 
Cover
| Summary: | Short-term synaptic plasticity has been proposed as a way for cortical neurons to process temporal information. We present a model network that uses short-term plasticity to implement a temporal clustering algorithm. The model's facilitory synapses learn temporal signals drawn from mixtures of nonlinear processes. Units in the model correspond to populations of cortical pyramidal cells arranged in columns; each column consists of neurons with similar spatiotemporal receptive fields. Clustering is based on mutual inhibition similar to Kohonen's SOMs. A generalized expectation maximization (GEM) algorithm, guaranteed to increase model likelihood with each iteration, learns the synaptic parameters. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 0925-2312 1872-8286  | 
| DOI: | 10.1016/j.neucom.2004.10.086 |