A fast and efficient algorithm for multi-channel transcranial magnetic stimulation (TMS) signal denoising
TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filte...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 60; no. 9; pp. 2479 - 2492 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-022-02616-x |
Cover
| Abstract | TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filtering (IGMF) algorithm based on adaptive framing is proposed. Firstly, the framing points are calculated by the adaptive framing algorithm, and multiple signal segments are obtained by the framing points. Then, the IGMF algorithm is used to filter the signal segments. Finally, the filtered signal segments are merged into TMS signals. The performance of our algorithm is evaluated using the SNR, RMSE, and MAE. Experiments show that the results of the proposed algorithm on three evaluation indicators are superior to others. And the running time of the algorithm is only 2.88 ~ 37.87% of others. Therefore, the proposed algorithm can efficiently denoise TMS signals and has advantages in fast processing of multi-channel signals.
Graphical abstract
The improved generalized morphological filtering(IGMF) algorithm based on adaptive framing algorithm is used to process 264-channel signals, which achieves signal denoising through a series of operations. The flowchart and result of this algorithm are shown in Fig.
1
. |
|---|---|
| AbstractList | TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filtering (IGMF) algorithm based on adaptive framing is proposed. Firstly, the framing points are calculated by the adaptive framing algorithm, and multiple signal segments are obtained by the framing points. Then, the IGMF algorithm is used to filter the signal segments. Finally, the filtered signal segments are merged into TMS signals. The performance of our algorithm is evaluated using the SNR, RMSE, and MAE. Experiments show that the results of the proposed algorithm on three evaluation indicators are superior to others. And the running time of the algorithm is only 2.88 ~ 37.87% of others. Therefore, the proposed algorithm can efficiently denoise TMS signals and has advantages in fast processing of multi-channel signals.
Graphical abstract
The improved generalized morphological filtering(IGMF) algorithm based on adaptive framing algorithm is used to process 264-channel signals, which achieves signal denoising through a series of operations. The flowchart and result of this algorithm are shown in Fig.
1
. TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filtering (IGMF) algorithm based on adaptive framing is proposed. Firstly, the framing points are calculated by the adaptive framing algorithm, and multiple signal segments are obtained by the framing points. Then, the IGMF algorithm is used to filter the signal segments. Finally, the filtered signal segments are merged into TMS signals. The performance of our algorithm is evaluated using the SNR, RMSE, and MAE. Experiments show that the results of the proposed algorithm on three evaluation indicators are superior to others. And the running time of the algorithm is only 2.88 ~ 37.87% of others. Therefore, the proposed algorithm can efficiently denoise TMS signals and has advantages in fast processing of multi-channel signals. The improved generalized morphological filtering(IGMF) algorithm based on adaptive framing algorithm is used to process 264-channel signals, which achieves signal denoising through a series of operations. The flowchart and result of this algorithm are shown in Fig. 1.TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filtering (IGMF) algorithm based on adaptive framing is proposed. Firstly, the framing points are calculated by the adaptive framing algorithm, and multiple signal segments are obtained by the framing points. Then, the IGMF algorithm is used to filter the signal segments. Finally, the filtered signal segments are merged into TMS signals. The performance of our algorithm is evaluated using the SNR, RMSE, and MAE. Experiments show that the results of the proposed algorithm on three evaluation indicators are superior to others. And the running time of the algorithm is only 2.88 ~ 37.87% of others. Therefore, the proposed algorithm can efficiently denoise TMS signals and has advantages in fast processing of multi-channel signals. The improved generalized morphological filtering(IGMF) algorithm based on adaptive framing algorithm is used to process 264-channel signals, which achieves signal denoising through a series of operations. The flowchart and result of this algorithm are shown in Fig. 1. TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filtering (IGMF) algorithm based on adaptive framing is proposed. Firstly, the framing points are calculated by the adaptive framing algorithm, and multiple signal segments are obtained by the framing points. Then, the IGMF algorithm is used to filter the signal segments. Finally, the filtered signal segments are merged into TMS signals. The performance of our algorithm is evaluated using the SNR, RMSE, and MAE. Experiments show that the results of the proposed algorithm on three evaluation indicators are superior to others. And the running time of the algorithm is only 2.88 ~ 37.87% of others. Therefore, the proposed algorithm can efficiently denoise TMS signals and has advantages in fast processing of multi-channel signals.The improved generalized morphological filtering(IGMF) algorithm based on adaptive framing algorithm is used to process 264-channel signals, which achieves signal denoising through a series of operations. The flowchart and result of this algorithm are shown in Fig. 1. |
| Author | Tian, Kaiwen Zheng, Yu Liu, Jinzhen Xiong, Hui |
| Author_xml | – sequence: 1 givenname: Jinzhen surname: Liu fullname: Liu, Jinzhen organization: The School of Control Science and Engineering, Tiangong University, Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University – sequence: 2 givenname: Kaiwen surname: Tian fullname: Tian, Kaiwen organization: The School of Control Science and Engineering, Tiangong University, Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University – sequence: 3 givenname: Hui orcidid: 0000-0001-8940-5626 surname: Xiong fullname: Xiong, Hui email: xionghui@tiangong.edu.cn organization: The School of Control Science and Engineering, Tiangong University, Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University – sequence: 4 givenname: Yu surname: Zheng fullname: Zheng, Yu organization: The School of Life Sciences, Tiangong University |
| BookMark | eNp9kD1rHDEQhkWwIeePP5BKkMYp1p7Rar9KYxI7cCZF7FrMytKejl3JkXRw-feWfYGACxejQeJ5R8Nzwo588IaxLwiXCNBdJcQGuwqEKNViW-0_sRV2EiuQUh6xFaCEChD7z-wkpS2AwEbIFXPX3FLKnPwTN9Y67Ywvt3kK0eXNwm2IfNnN2VV6Q96bmedIPulyOJr5QpM32WmesisYZRc8v3i4__2NJzf5QjwZH1xyfjpjx5bmZM7_9VP2-OP7w81dtf51-_Pmel1p0YtcUdtqEsaOBEiN7gUB9Y00EvQwjjTYztKoh_IiLMFYD51srW3qHsE0CG19yi4Oc59j-LMzKavFJW3mmbwJu6REO0gpEEEU9Os7dBt2sWxdqA5ezcmuLpQ4UDqGlKKx6jm6heJfhaBe7auDfVXsqzf7al9C_buQdvlNT_Hn5o-j9SGayj9-MvH_Vh-kXgA7j5z0 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0292733 |
| Cites_doi | 10.1007/s10851-018-0849-2 10.1109/MGRS.2018.2854840 10.3390/e20090682 10.1016/j.measurement.2017.04.032 10.1016/j.asoc.2017.11.030 10.1016/j.neuroscience.2018.01.009 10.1016/j.bbe.2020.05.008 10.1049/iet-cta.2017.0821 10.1016/j.renene.2019.01.018 10.1016/j.schres.2016.11.017 10.1007/s10586-017-1655-0 10.1007/s11760-020-01702-7 10.1016/j.ymssp.2017.12.008 10.1007/s11760-017-1058-y 10.1049/iet-spr.2017.0399 10.1109/JLT.2016.2536362 10.2112/SI94-024.1 10.1142/s0218488517400049 10.1016/j.bbe.2013.07.006 10.1109/LPT.2017.2707561 10.1088/1361-6501/aa5c2a 10.1016/j.brs.2017.10.001 10.1016/j.measurement.2020.107931 10.1142/S1793545818500104 10.1016/j.bbe.2016.04.001 10.1016/j.brs.2019.06.010 10.1016/j.ymssp.2016.05.038 10.1016/j.isprsjprs.2014.03.015 10.1155/2019/2059631 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2022 International Federation for Medical and Biological Engineering 2022. 2022. International Federation for Medical and Biological Engineering. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2022 – notice: International Federation for Medical and Biological Engineering 2022. – notice: 2022. International Federation for Medical and Biological Engineering. |
| DBID | AAYXX CITATION 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s11517-022-02616-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database (Proquest) Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 2492 |
| ExternalDocumentID | 10_1007_s11517_022_02616_x |
| GrantInformation_xml | – fundername: national natural science foundation of china grantid: No. 62071329 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: natural science foundation of tianjin city grantid: No.18JCYBJC90400; NO. 18JCQNJC84000 funderid: http://dx.doi.org/10.13039/501100006606 |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c282t-a66ca2efba01a5c82a0a854e40c9bba9f7fabc954e2fa0b39746ff53810e51063 |
| IEDL.DBID | U2A |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Fri Sep 05 08:09:23 EDT 2025 Tue Oct 07 05:46:24 EDT 2025 Wed Oct 01 03:38:01 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 Fri Feb 21 02:46:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | TMS signal Adaptive framing Signal denoising Mathematical morphology |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c282t-a66ca2efba01a5c82a0a854e40c9bba9f7fabc954e2fa0b39746ff53810e51063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8940-5626 |
| PQID | 2700444473 |
| PQPubID | 54161 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2694421102 proquest_journals_2700444473 crossref_primary_10_1007_s11517_022_02616_x crossref_citationtrail_10_1007_s11517_022_02616_x springer_journals_10_1007_s11517_022_02616_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220900 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Plewnia (CR1) 2017; 11 Zhao, Yao, Xu (CR17) 2018; 20 Ghamisi, Maggiori, Li (CR18) 2018; 6 Zhang, Li, Chen, Gong (CR23) 2018; 373 Alcalde, Burusco, Bustince, Fuentes-Gonzalez, Sesma-Sara (CR19) 2017; 25 Jianhua, Qiang, Jinrong, Lin, Jilong (CR24) 2019; 22 CR13 Currie, Nelson (CR3) 2017; 183 Seddighi, Ahmadzadeh, Taban (CR21) 2020; 14 Sun, Rao, Gao (CR15) 2018; 11 Li, Wang, Zhao (CR25) 2018; 12 Bibiloni, González-Hidalgo, Massanet (CR11) 2019; 61 Krishnan, Raj, Balasubramanian, Chen (CR8) 2020; 40 Sernaa, Marcotegui (CR16) 2014; 93 Bouchet, Pastore, Brun, Ballarin (CR9) 2017; 11 Li, Liang, Zuo (CR12) 2017; 106 Jenkal, Latif, Toumanari, Dliou, El B’charri, Maoulainine (CR28) 2016; 36 Hao, Dong, Liao, Liang, Wang, Wang (CR20) 2019; 136 Li, Li, Yang, Liang, Xu (CR27) 2018; 105 Tian (CR22) 2019; 94 Piskorowski (CR29) 2013; 33 Xiong, Chen, Liu, Qi, Tian (CR4) 2020; 164 Ding, Xu, Alsaadi, Hayat (CR7) 2018; 12 Philip, Aiken, Kelley, Burch, Waterman, Holtzheimer (CR2) 2019; 12 Li, Wang, Wang, Sun, Li (CR10) 2017; 82 Yamasaki, Nagashima, Hiraoka, Konishi (CR6) 2017; 29 Deng, Yang, Tang, Hao, Zhang (CR26) 2017; 28 Moon, Yoo, Kye, Lee (CR5) 2016; 34 Gonzalez-Hidalgo, Massanet, Mir, Ruiz-Aguilera (CR14) 2018; 63 A Sernaa (2616_CR16) 2014; 93 SR Moon (2616_CR5) 2016; 34 2616_CR13 Z Jianhua (2616_CR24) 2019; 22 P Bibiloni (2616_CR11) 2019; 61 Y Li (2616_CR12) 2017; 106 X Zhang (2616_CR23) 2018; 373 H Li (2616_CR25) 2018; 12 M Gonzalez-Hidalgo (2616_CR14) 2018; 63 W Jenkal (2616_CR28) 2016; 36 Y Hao (2616_CR20) 2019; 136 C Plewnia (2616_CR1) 2017; 11 Y Yamasaki (2616_CR6) 2017; 29 H Li (2616_CR10) 2017; 82 J Sun (2616_CR15) 2018; 11 C Alcalde (2616_CR19) 2017; 25 J Piskorowski (2616_CR29) 2013; 33 P Ghamisi (2616_CR18) 2018; 6 Y Li (2616_CR27) 2018; 105 A Bouchet (2616_CR9) 2017; 11 F Deng (2616_CR26) 2017; 28 NS Philip (2616_CR2) 2019; 12 H Xiong (2616_CR4) 2020; 164 F Ding (2616_CR7) 2018; 12 J Tian (2616_CR22) 2019; 94 PT Krishnan (2616_CR8) 2020; 40 Z Seddighi (2616_CR21) 2020; 14 A Currie (2616_CR3) 2017; 183 H Zhao (2616_CR17) 2018; 20 |
| References_xml | – volume: 61 start-page: 394 issue: 3 year: 2019 end-page: 410 ident: CR11 article-title: Soft color morphology: A fuzzy approach for multivariate images publication-title: J Math Imaging Vis doi: 10.1007/s10851-018-0849-2 – volume: 6 start-page: 10 issue: 3 year: 2018 end-page: 43 ident: CR18 article-title: New frontiers in spectral-spatial hyperspectral image classification: the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning publication-title: IEEE Geosci Remote Sens Magazine doi: 10.1109/MGRS.2018.2854840 – volume: 20 start-page: 682 issue: 9 year: 2018 ident: CR17 article-title: Study on a novel fault damage degree identification method using high-order differential mathematical morphology gradient spectrum entropy publication-title: Entropy doi: 10.3390/e20090682 – volume: 106 start-page: 53 year: 2017 end-page: 65 ident: CR12 article-title: A new strategy of using a time-varying structure element for mathematical morphological filtering publication-title: Measurement doi: 10.1016/j.measurement.2017.04.032 – volume: 63 start-page: 167 year: 2018 end-page: 180 ident: CR14 article-title: Improving salt and pepper noise removal using a fuzzy mathematical morphology-based filter publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.030 – volume: 373 start-page: 60 year: 2018 end-page: 71 ident: CR23 article-title: Background suppression and its relation to foreground processing of speech versus non-speech streams publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.01.009 – volume: 40 start-page: 1124 issue: 3 year: 2020 end-page: 1139 ident: CR8 article-title: Schizophrenia detection using Multivariate Empirical Mode Decomposition and entropy measures from multichannel EEG signal publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.05.008 – volume: 12 start-page: 892 issue: 7 year: 2018 end-page: 899 ident: CR7 article-title: Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique publication-title: IET Contr Theory Appl doi: 10.1049/iet-cta.2017.0821 – volume: 136 start-page: 572 year: 2019 end-page: 585 ident: CR20 article-title: A novel clustering algorithm based on mathematical morphology for wind power generation prediction publication-title: Renew Energy doi: 10.1016/j.renene.2019.01.018 – volume: 183 start-page: 161 year: 2017 end-page: 162 ident: CR3 article-title: Can repetitive transcranial magnetic stimulation improve neurocognition in schizophrenia when combined with cognitive remediation? publication-title: Schizophr Res doi: 10.1016/j.schres.2016.11.017 – volume: 22 start-page: 12443 issue: 5 year: 2019 end-page: 12450 ident: CR24 article-title: A novel algorithm for threshold image denoising based on wavelet construction publication-title: Cluster Comput doi: 10.1007/s10586-017-1655-0 – volume: 14 start-page: 1583 year: 2020 end-page: 1590 ident: CR21 article-title: Quantitative analysis of SNR in bilinear time frequency domain publication-title: Signal Image Video Process doi: 10.1007/s11760-020-01702-7 – volume: 105 start-page: 319 year: 2018 end-page: 337 ident: CR27 article-title: A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy publication-title: Mech Syst Signal Proc doi: 10.1016/j.ymssp.2017.12.008 – volume: 11 start-page: 1065 issue: 6 year: 2017 end-page: 1072 ident: CR9 article-title: Compensatory fuzzy mathematical morphology publication-title: Signal Image Video Process doi: 10.1007/s11760-017-1058-y – ident: CR13 – volume: 12 start-page: 844 issue: 7 year: 2018 end-page: 851 ident: CR25 article-title: Filter bank properties of envelope modified EMD methods publication-title: IET Signal Process doi: 10.1049/iet-spr.2017.0399 – volume: 34 start-page: 2297 issue: 9 year: 2016 end-page: 2303 ident: CR5 article-title: Feed forward noise suppression for ASE-seeded WDM systems publication-title: J Lightwave Technol doi: 10.1109/JLT.2016.2536362 – volume: 94 start-page: 125 issue: SI year: 2019 end-page: 128 ident: CR22 article-title: A noise suppression method for underwater vehicle flow publication-title: J Coast Res doi: 10.2112/SI94-024.1 – volume: 25 start-page: 73 issue: Suppl. 1 year: 2017 end-page: 98 ident: CR19 article-title: Linking mathematical morphology and L-fuzzy concepts publication-title: Int J Uncertainty Fuzziness Knowl-Based Syst doi: 10.1142/s0218488517400049 – volume: 33 start-page: 171 issue: 3 year: 2013 end-page: 178 ident: CR29 article-title: Time-efficient removal of power-line noise from EMG signals using IIR notch filters with non-zero initial conditions publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2013.07.006 – volume: 29 start-page: 1167 issue: 14 year: 2017 end-page: 1170 ident: CR6 article-title: Experimental demonstration of ASE noise suppression by soliton self-frequency shift publication-title: IEEE Photonics Technol Lett doi: 10.1109/LPT.2017.2707561 – volume: 28 issue: 4 year: 2017 ident: CR26 article-title: Self adaptive multi-scale morphology AVG-Hat filter and its application to fault feature extraction for wheel bearing publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa5c2a – volume: 11 start-page: 1 issue: 1 year: 2017 end-page: 2 ident: CR1 article-title: Transcranial brain stimulation for the treatment of tinnitus: positive lessons from a negative trial publication-title: Brain Stimul doi: 10.1016/j.brs.2017.10.001 – volume: 164 year: 2020 ident: CR4 article-title: 264-channel high-performance magnetic field detection system for transcranial magnetic stimulation (TMS) publication-title: Measurement doi: 10.1016/j.measurement.2020.107931 – volume: 11 start-page: 1850010 issue: 03 year: 2018 ident: CR15 article-title: Extracting heartrate from optical signal of functional near-infrared spectroscopy based on mathematical morphology publication-title: J Innov Opt Health Sci doi: 10.1142/S1793545818500104 – volume: 36 start-page: 499 issue: 3 year: 2016 end-page: 508 ident: CR28 article-title: An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2016.04.001 – volume: 12 start-page: 1335 issue: 5 year: 2019 end-page: 1337 ident: CR2 article-title: Synchronized transcranial magnetic stimulation for posttraumatic stress disorder and comorbid major depression publication-title: Brain Stimul doi: 10.1016/j.brs.2019.06.010 – volume: 82 start-page: 490 year: 2017 end-page: 502 ident: CR10 article-title: The application of a general mathematical morphological particle as a novel indicator for the performance degradation assessment of a bearing publication-title: Mech Syst Signal Proc doi: 10.1016/j.ymssp.2016.05.038 – volume: 93 start-page: 243 year: 2014 end-page: 255 ident: CR16 article-title: Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2014.03.015 – volume: 40 start-page: 1124 issue: 3 year: 2020 ident: 2616_CR8 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.05.008 – volume: 12 start-page: 1335 issue: 5 year: 2019 ident: 2616_CR2 publication-title: Brain Stimul doi: 10.1016/j.brs.2019.06.010 – volume: 36 start-page: 499 issue: 3 year: 2016 ident: 2616_CR28 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2016.04.001 – volume: 82 start-page: 490 year: 2017 ident: 2616_CR10 publication-title: Mech Syst Signal Proc doi: 10.1016/j.ymssp.2016.05.038 – ident: 2616_CR13 doi: 10.1155/2019/2059631 – volume: 11 start-page: 1065 issue: 6 year: 2017 ident: 2616_CR9 publication-title: Signal Image Video Process doi: 10.1007/s11760-017-1058-y – volume: 28 issue: 4 year: 2017 ident: 2616_CR26 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa5c2a – volume: 93 start-page: 243 year: 2014 ident: 2616_CR16 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2014.03.015 – volume: 183 start-page: 161 year: 2017 ident: 2616_CR3 publication-title: Schizophr Res doi: 10.1016/j.schres.2016.11.017 – volume: 34 start-page: 2297 issue: 9 year: 2016 ident: 2616_CR5 publication-title: J Lightwave Technol doi: 10.1109/JLT.2016.2536362 – volume: 61 start-page: 394 issue: 3 year: 2019 ident: 2616_CR11 publication-title: J Math Imaging Vis doi: 10.1007/s10851-018-0849-2 – volume: 106 start-page: 53 year: 2017 ident: 2616_CR12 publication-title: Measurement doi: 10.1016/j.measurement.2017.04.032 – volume: 164 year: 2020 ident: 2616_CR4 publication-title: Measurement doi: 10.1016/j.measurement.2020.107931 – volume: 20 start-page: 682 issue: 9 year: 2018 ident: 2616_CR17 publication-title: Entropy doi: 10.3390/e20090682 – volume: 25 start-page: 73 issue: Suppl. 1 year: 2017 ident: 2616_CR19 publication-title: Int J Uncertainty Fuzziness Knowl-Based Syst doi: 10.1142/s0218488517400049 – volume: 94 start-page: 125 issue: SI year: 2019 ident: 2616_CR22 publication-title: J Coast Res doi: 10.2112/SI94-024.1 – volume: 22 start-page: 12443 issue: 5 year: 2019 ident: 2616_CR24 publication-title: Cluster Comput doi: 10.1007/s10586-017-1655-0 – volume: 12 start-page: 844 issue: 7 year: 2018 ident: 2616_CR25 publication-title: IET Signal Process doi: 10.1049/iet-spr.2017.0399 – volume: 14 start-page: 1583 year: 2020 ident: 2616_CR21 publication-title: Signal Image Video Process doi: 10.1007/s11760-020-01702-7 – volume: 105 start-page: 319 year: 2018 ident: 2616_CR27 publication-title: Mech Syst Signal Proc doi: 10.1016/j.ymssp.2017.12.008 – volume: 29 start-page: 1167 issue: 14 year: 2017 ident: 2616_CR6 publication-title: IEEE Photonics Technol Lett doi: 10.1109/LPT.2017.2707561 – volume: 11 start-page: 1850010 issue: 03 year: 2018 ident: 2616_CR15 publication-title: J Innov Opt Health Sci doi: 10.1142/S1793545818500104 – volume: 11 start-page: 1 issue: 1 year: 2017 ident: 2616_CR1 publication-title: Brain Stimul doi: 10.1016/j.brs.2017.10.001 – volume: 63 start-page: 167 year: 2018 ident: 2616_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.030 – volume: 33 start-page: 171 issue: 3 year: 2013 ident: 2616_CR29 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2013.07.006 – volume: 136 start-page: 572 year: 2019 ident: 2616_CR20 publication-title: Renew Energy doi: 10.1016/j.renene.2019.01.018 – volume: 6 start-page: 10 issue: 3 year: 2018 ident: 2616_CR18 publication-title: IEEE Geosci Remote Sens Magazine doi: 10.1109/MGRS.2018.2854840 – volume: 373 start-page: 60 year: 2018 ident: 2616_CR23 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.01.009 – volume: 12 start-page: 892 issue: 7 year: 2018 ident: 2616_CR7 publication-title: IET Contr Theory Appl doi: 10.1049/iet-cta.2017.0821 |
| SSID | ssj0021524 |
| Score | 2.3495097 |
| SecondaryResourceType | review_article |
| Snippet | TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2479 |
| SubjectTerms | Adaptive algorithms Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer Applications Filtration Flow charts Human Physiology Imaging Information processing Magnetic fields Morphology Noise reduction Radiology Review Article Segments Signal processing Transcranial magnetic stimulation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_sCdKXolXxWisr9KHSLt7tbTbJgxQVRQoeYhV8C7Ob3VO4y_kRwT-_M7nNHRU0D4EkmyyZnd35zc4XwPccVeqUZk3VaKnTDCVmIZGEXUtdKjR923j5Ds3Ztf5zk9wswbCNhWG3ynZNbBbqcup4j3yfDaSajnTw-_5BctUotq62JTQwllYoD5oUYx9gWXFmrA4sH50MLy7nKhhJKz13aiRsHcNoZsF0JPxSyd7trJcY-fK_qFrgz1cm00YSna7CpwghxeFszNdgyVefYeU8GsnX4e5QBHyqBVal8E2GCBIsAscj-p36diIIporGj1By1G_lx6JmgeXoRMwoJjiqOLJR0OSfxOJe4sfV-d89wc4e1IKWqukd7zFswPXpydXxmYwVFaQj1aqWaIxD5YPFXh8TlynsYZZor3sutxbzkAa0Lqc7KmDPElbRJoSEs4B5mrxmsAmdalr5LY71HpBm4hUhmIEmmGO1zfoupUsk0JaFLvRb4hUuphvnqhfjYpEomQleEMGLhuDFSxd-zt-5nyXbeLf1djsmRZx4T8WCTbqwO39MU4btIFj56TO1MbnWrPiqLvxqx3Lxibd7_PJ-j1_ho2rYhz3QtqFTPz77bwRZarsT-fAfuirmqA priority: 102 providerName: ProQuest |
| Title | A fast and efficient algorithm for multi-channel transcranial magnetic stimulation (TMS) signal denoising |
| URI | https://link.springer.com/article/10.1007/s11517-022-02616-x https://www.proquest.com/docview/2700444473 https://www.proquest.com/docview/2694421102 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-0444 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA_qQHwRP3F-jAg-KBrYsjRtH6dsijIRdTCfyiVLVNg6cRX8872r7Yaign1IaZumcLnL_a73EcYOYpChlYosVa2ECiMQEPlAIHYdqIEE3TB5lO-1vuipy37QL5LCJmW0e-mSzFfqWbIbKqdQUPQ52Q1aIHKsBFTOC7m4J1tTMws1kpoGLiJ-LlJlfh7jqzqaYcxvbtFc23RW2HIBE3nrc15X2ZxL19hit3CEr7PnFvcwyTikA-7yKhCoPDgMH8do7D-NOEJRnscKCsrsTd2QZ6SULDbIcHwEjyllL3IU8FGxgRc_vO_eHXEK6MAeuByNn-k_wgbrddr3Zxei2DVBWDSfMgFaW5DOG6g3ILCRhDpEgXKqbmNjIPahB2NjvCM91A3iEaW9D6jSl0MB1c1NtpCOU7dF-dxNtD6cRJTSVAhljDJRw4Z4CQjMIl9ljZJ4iS1KitPOFsNkVgyZCJ4gwZOc4Ml7lR1P33n5LKjxZ-_dck6SQrgmCfnKFR5hs8r2p49RLMjXAakbv2EfHStFxq2sspNyLmdD_P7F7f9132FLMmcnijrbZQvZ65vbQ5iSmRqbD_shtlHnvMYqrfOHqzaeT9vXN7e1nGM_ABw74o8 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQJe0PgShQFGAgkEFq3jfD1MaMCmjq0Vgk7aWzg79pjUpoNmYvvn9rftLnVagcTelodISRxbOp99v_N9AbzMUaVWadZUEy11mqHEzMeSsGupS4VJzzRevsOkf6C_HMaHK3DRxsKwW2W7JzYbdTm1fEb-ng2kmq40-nDyS3LVKLautiU0MJRWKDebFGMhsGPPnf8hFW62ufuZ5vuVUjvbo099GaoMSEvqRi0xSSwq5w12exjbTGEXs1g73bW5MZj71KOxOb1RHruG5LdOvI85M5Yjhk4i6vcGrOlI56T8rX3cHn79tlD5SDrqhRMlYfkQtjMP3iNhm0r2pmc9KJFnf4vGJd79x0TbSL6ddbgTIKvYmvPYXVhx1T24OQhG-ftwvCU8zmqBVSlck5GCBJnA8RGRr_45EQSLReO3KDnKuHJjUbOAtHQj5hcTPKo4klLQZjMJxcTE69Hg-xvBziXUgrbG6TGfaTyAg2uh7UNYraaVe8Sx5RFpQk4RYoo0wSqjTdazKT0igcTMd6DXEq-wIb05V9kYF8vEzEzwggheNAQvzjrwdvHPyTy5x5WtN9o5KcJCnxVLtuzAi8VnWqJsd8HKTU-pTZJrzYq26sC7di6XXfx_xMdXj_gcbvVHg_1if3e49wRuq4aV2PttA1br36fuKcGl2jwLPCngx3Uvg0tA6CTN |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxNBEB5qC8UXsVUx2toVLCi6JNnb27t7kFJaQ2t_INhC3s7ZzW4tJJdqrtj-a_51zlzucijYt95D4JLNHszO7nxz880MwJsMVeKUZk_VaKmTFCWmIZaEXUd6pND0bcXyPTUH5_rzMB4uwe8mF4Zplc2ZWB3Uo6njd-RdDpBqupKoG2paxJf9wc7VD8kdpDjS2rTTmKvIkb_9Re7b7OPhPq31tlKDT2d7B7LuMCAduRqlRGMcKh8s9voYu1RhD9NYe91zmbWYhSSgdRl9owL2LNlubUKIuSqWJ2U2Ec37AFaSKMqYTpgMW2eP7KJe0CcJxdcJO_O0PTKziWQePXtARt78bRRbpPtPcLayeYPH8KgGq2J3rl1rsOSLdVg9qcPxT-ByVwSclQKLkfBVLQoyYQLHFySs8vtEECAWFWNRcn5x4ceiZNPo6IPUXkzwouAcSkHHzKRuIybenp18fSeYVkIj6FCcXvLbjKdwfi-SfQbLxbTwzzmrPCIfyCvCSpEmQGW1TfsuoVskeJiGDvQb4eWuLmzO_TXGeVuSmQWek8DzSuD5TQfeL_5zNS_rcefojWZN8nqLz_JWITvwevEzbU6OuGDhp9c0xmRas4utOvChWct2iv8_8cXdT9yCVVL-_Pjw9OglPFSVJjHtbQOWy5_XfpNwUmlfVQop4Nt974A_NckiZw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+and+efficient+algorithm+for+multi-channel+transcranial+magnetic+stimulation+%28TMS%29+signal+denoising&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Liu%2C+Jinzhen&rft.au=Tian%2C+Kaiwen&rft.au=Xiong%2C+Hui&rft.au=Zheng%2C+Yu&rft.date=2022-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=60&rft.issue=9&rft.spage=2479&rft.epage=2492&rft_id=info:doi/10.1007%2Fs11517-022-02616-x&rft.externalDocID=10_1007_s11517_022_02616_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |