A fast and efficient algorithm for multi-channel transcranial magnetic stimulation (TMS) signal denoising
TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filte...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 60; no. 9; pp. 2479 - 2492 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-022-02616-x |
Cover
| Summary: | TMS signal denoising is crucial for 264-channel TMS high-performance magnetic field detection system application, which can be considered as a problem of obtaining an optimal solution to the desired clean signal. In order to efficiently suppress the noise, an improved generalized morphological filtering (IGMF) algorithm based on adaptive framing is proposed. Firstly, the framing points are calculated by the adaptive framing algorithm, and multiple signal segments are obtained by the framing points. Then, the IGMF algorithm is used to filter the signal segments. Finally, the filtered signal segments are merged into TMS signals. The performance of our algorithm is evaluated using the SNR, RMSE, and MAE. Experiments show that the results of the proposed algorithm on three evaluation indicators are superior to others. And the running time of the algorithm is only 2.88 ~ 37.87% of others. Therefore, the proposed algorithm can efficiently denoise TMS signals and has advantages in fast processing of multi-channel signals.
Graphical abstract
The improved generalized morphological filtering(IGMF) algorithm based on adaptive framing algorithm is used to process 264-channel signals, which achieves signal denoising through a series of operations. The flowchart and result of this algorithm are shown in Fig.
1
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 0140-0118 1741-0444 1741-0444 |
| DOI: | 10.1007/s11517-022-02616-x |