Thermal transport in twisted few-layer graphene
Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated littl...
Saved in:
| Published in | Chinese physics B Vol. 26; no. 11; pp. 408 - 413 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
| DOI | 10.1088/1674-1056/26/11/116503 |
Cover
| Summary: | Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene(T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ(||) first decreases and then increases, and the transition angle is θ = 30°. For the parallel transport, the relation between thermal conductivity κand θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene. |
|---|---|
| Bibliography: | Min-Hua Wang, Yue-E Xie, Yuan-Ping Chen( Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, China) Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene(T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ(||) first decreases and then increases, and the transition angle is θ = 30°. For the parallel transport, the relation between thermal conductivity κand θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene. twisted graphene thermal transport rotation angle thermal conductivity 11-5639/O4 |
| ISSN: | 1674-1056 2058-3834 |
| DOI: | 10.1088/1674-1056/26/11/116503 |