Thermoelectric properties of two-dimensional hexagonal indium–VA
The electrical properties and thermoelectric(TE) properties of monolayer In–VA are investigated theoretically by combining first-principles method with Boltzmann transport theory. The ultralow intrinsic thermal conductivities of 2.64 W·m~(-1)·K~(-1)(InP), 1.31 W·m~(-1)·K~(-1)(InAs), 0.87 W·m~(-1)·K~...
Saved in:
Published in | Chinese physics B Vol. 27; no. 2; pp. 502 - 509 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/27/2/026802 |
Cover
Summary: | The electrical properties and thermoelectric(TE) properties of monolayer In–VA are investigated theoretically by combining first-principles method with Boltzmann transport theory. The ultralow intrinsic thermal conductivities of 2.64 W·m~(-1)·K~(-1)(InP), 1.31 W·m~(-1)·K~(-1)(InAs), 0.87 W·m~(-1)·K~(-1)(InSb), and 0.62 W·m~(-1) K~(-1)(InBi) evaluated at room temperature are close to typical thermal conductivity values of good TE materials(κ 〈 2 W·m~(-1)·K~(-1)). The maximal ZT values of 0.779, 0.583, 0.696, 0.727, and 0.373 for InN, InP, InAs, InSb, and InBi at p-type level are calculated at 900 K,which makes In–VA potential TE material working at medium-high temperature. |
---|---|
Bibliography: | thermoelectric properties two-dimensional In–VA figure of merit Jing-Yun Bi, Li-Hong Han1, Qian Wang1 Li-YuanWu1, RugeQuhe1,2, and Peng-Fei Lu1,3 (1 State Key Laboratory ofInformation Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China 2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 3 State Key Laboratory of Functional Materials for lnformatics, Shanghai Institute of Microsystem and Infobrmation Technology, Chinese Academy of Sciences, Shanghai 200050, China) 11-5639/O4 The electrical properties and thermoelectric(TE) properties of monolayer In–VA are investigated theoretically by combining first-principles method with Boltzmann transport theory. The ultralow intrinsic thermal conductivities of 2.64 W·m~(-1)·K~(-1)(InP), 1.31 W·m~(-1)·K~(-1)(InAs), 0.87 W·m~(-1)·K~(-1)(InSb), and 0.62 W·m~(-1) K~(-1)(InBi) evaluated at room temperature are close to typical thermal conductivity values of good TE materials(κ 〈 2 W·m~(-1)·K~(-1)). The maximal ZT values of 0.779, 0.583, 0.696, 0.727, and 0.373 for InN, InP, InAs, InSb, and InBi at p-type level are calculated at 900 K,which makes In–VA potential TE material working at medium-high temperature. |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/27/2/026802 |