Optically induced abnormal terahertz absorption in black silicon

The absorption responses of blank silicon and black silicon(silicon with micro/nano-conical surface structures) wafers to an 808-nm continuous-wave(CW) laser are investigated at room temperature by terahertz time-domain spectroscopy. The transmission of the blank silicon shows an appreciable change,...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 27; no. 2; pp. 570 - 574
Main Author 翟东为;刘海玲;Xxx Sedao;杨玉平
Format Journal Article
LanguageEnglish
Published 01.02.2018
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/27/2/027802

Cover

More Information
Summary:The absorption responses of blank silicon and black silicon(silicon with micro/nano-conical surface structures) wafers to an 808-nm continuous-wave(CW) laser are investigated at room temperature by terahertz time-domain spectroscopy. The transmission of the blank silicon shows an appreciable change, from ground state to the pump state, with amplitude varying up to 50%, while that of the black silicon(BS) with different cone sizes is observed to be more stable. Furthermore,the terahertz transmission through BS is observed to be strongly dependent on the size of the conical structure geometry.The conductivities of blank silicon and BS are extracted from the experimental data with and without pumping. The non-photo-excited conductivities increase with increasing frequency and agree well with the Lorentz model, whereas the photo-excited conductivities decrease with increasing frequency and fit well with the Drude–Smith model. Indeed, for BS, the conductivity, electron density and mobility are found to correlate closely with the size of the conical structure.This is attributed to the influence of space confinement on the carrier excitation, that is, the carriers excited at the BS conical structure surface have a stronger localization effect with a backscattering behavior in small-sized microstructures and a higher recombination rate due to increased electron interaction and collision with electrons, interfaces and grain boundaries.
Bibliography:terahertz spectroscopy black silicon ultrafast phenomena
Dong-Wei Zhai1, Hal-Ling Liu1, Xxx Sedao2, and Yu-Ping Yang1( School of Science, Minzu University of China, Beijing 100081, China 2 Labo Hubert Curien, University of Lyon, France)
11-5639/O4
The absorption responses of blank silicon and black silicon(silicon with micro/nano-conical surface structures) wafers to an 808-nm continuous-wave(CW) laser are investigated at room temperature by terahertz time-domain spectroscopy. The transmission of the blank silicon shows an appreciable change, from ground state to the pump state, with amplitude varying up to 50%, while that of the black silicon(BS) with different cone sizes is observed to be more stable. Furthermore,the terahertz transmission through BS is observed to be strongly dependent on the size of the conical structure geometry.The conductivities of blank silicon and BS are extracted from the experimental data with and without pumping. The non-photo-excited conductivities increase with increasing frequency and agree well with the Lorentz model, whereas the photo-excited conductivities decrease with increasing frequency and fit well with the Drude–Smith model. Indeed, for BS, the conductivity, electron density and mobility are found to correlate closely with the size of the conical structure.This is attributed to the influence of space confinement on the carrier excitation, that is, the carriers excited at the BS conical structure surface have a stronger localization effect with a backscattering behavior in small-sized microstructures and a higher recombination rate due to increased electron interaction and collision with electrons, interfaces and grain boundaries.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/27/2/027802