Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe
Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic appli- cations. In this work, we successfully synthesize PbTe nanowires via th...
Saved in:
Published in | Chinese physics letters Vol. 34; no. 2; pp. 67 - 70 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2017
|
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/34/2/026201 |
Cover
Summary: | Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic appli- cations. In this work, we successfully synthesize PbTe nanowires via the chemical vapor deposition method and demonstrate the existence of topological surface states by their 2D weak anti-localization effect and Shubnikov-de Haas oscillations. More importantly, the surface state contributes ~61% of the total conduction, suggesting dom- inant surface transport in PbTe nanowires at low temperatures. Our work provides an experimental groundwork for researching TCIs and is a step forward for the applications of PbTe nanowires in spintronic devices. |
---|---|
Bibliography: | Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic appli- cations. In this work, we successfully synthesize PbTe nanowires via the chemical vapor deposition method and demonstrate the existence of topological surface states by their 2D weak anti-localization effect and Shubnikov-de Haas oscillations. More importantly, the surface state contributes ~61% of the total conduction, suggesting dom- inant surface transport in PbTe nanowires at low temperatures. Our work provides an experimental groundwork for researching TCIs and is a step forward for the applications of PbTe nanowires in spintronic devices. 11-1959/O4 Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang ( Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093) |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/34/2/026201 |