Comparing dark matter models,modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves
We compare six models(including the baryonic model,two dark matter models,two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves.For the dark matter models,we assume NFW profile and core-modified profile for the dark halo,respectively.For the...
Saved in:
Published in | Chinese physics C Vol. 41; no. 5; pp. 135 - 143 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2017
|
Online Access | Get full text |
ISSN | 1674-1137 0254-3052 |
DOI | 10.1088/1674-1137/41/5/055101 |
Cover
Summary: | We compare six models(including the baryonic model,two dark matter models,two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves.For the dark matter models,we assume NFW profile and core-modified profile for the dark halo,respectively.For the modified Newtonian dynamics models,we discuss Milgrom's MOND theory with two different interpolation functions,the standard and the simple interpolation functions.For the modified gravity,we focus on Moffat's MSTG theory.We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies.We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model.It is found that none of the six models can fit all the galaxy rotation curves well.Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter.MOND can fit the largest number of galaxies,and only one galaxy can be best fitted by the MSTG model.Core-modified model fits about half the LSB galaxies well,but no HSB galaxies,while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies.This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. |
---|---|
Bibliography: | 11-5641/O4 We compare six models(including the baryonic model,two dark matter models,two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves.For the dark matter models,we assume NFW profile and core-modified profile for the dark halo,respectively.For the modified Newtonian dynamics models,we discuss Milgrom's MOND theory with two different interpolation functions,the standard and the simple interpolation functions.For the modified gravity,we focus on Moffat's MSTG theory.We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies.We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model.It is found that none of the six models can fit all the galaxy rotation curves well.Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter.MOND can fit the largest number of galaxies,and only one galaxy can be best fitted by the MSTG model.Core-modified model fits about half the LSB galaxies well,but no HSB galaxies,while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies.This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. galaxy galaxies rotation Newtonian gravity interpolation accounting Bayesian brightness fitted Xin Li Li Tang Hai-Nan Lin( 1 Department of Physics, Chongqing University, Chongqing 401331, China 2 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China) |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/41/5/055101 |