Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder

Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 7; pp. 209 - 213
Main Author 余振中 赵国树 孙罡 司海飞 杨忠
Format Journal Article
LanguageEnglish
Published 01.07.2016
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/25/7/074101

Cover

More Information
Summary:Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material,which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.
Bibliography:Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material,which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.
11-5639/O4
transformation optics invisibility cloak metamaterial
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/25/7/074101