Laser-induced convenient fabrication of CdS nanocages with super-adsorption capability for methyl blue solution

We report on the successful synthesis of cadmium sulfide (CdS) nanocages by laser ablation of bulk Cd target in thioacetamide (TAA) solution. The CdS nanocages exhibit obvious interior hollow spaces and distinctive porous-shell structures. After laser ablation of Cd target in liquid condition, the u...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 8; pp. 293 - 298
Main Author 刘乐 徐林林 张华 陈明
Format Journal Article
LanguageEnglish
Published 01.08.2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/8/085206

Cover

More Information
Summary:We report on the successful synthesis of cadmium sulfide (CdS) nanocages by laser ablation of bulk Cd target in thioacetamide (TAA) solution. The CdS nanocages exhibit obvious interior hollow spaces and distinctive porous-shell structures. After laser ablation of Cd target in liquid condition, the unique structure should be attributed to the initial forma- tion of Cd micro-gas bubble via a model of micro-explosive boiling model. Surprisingly, the obtained CdS nanocages can provide a super-adsorption of methyl blue (MB) solution. The maximum adsorption capacity reaches up to 11813.3 mg/g, which is much higher than that reported in many previous researches. Without using any complicated stabilizers or soft directing agents, the pure CdS nanocages fabricated by laser ablation will serve as advanced absorbents in further research.
Bibliography:laser-induced fabrication, CdS nanocages
We report on the successful synthesis of cadmium sulfide (CdS) nanocages by laser ablation of bulk Cd target in thioacetamide (TAA) solution. The CdS nanocages exhibit obvious interior hollow spaces and distinctive porous-shell structures. After laser ablation of Cd target in liquid condition, the unique structure should be attributed to the initial forma- tion of Cd micro-gas bubble via a model of micro-explosive boiling model. Surprisingly, the obtained CdS nanocages can provide a super-adsorption of methyl blue (MB) solution. The maximum adsorption capacity reaches up to 11813.3 mg/g, which is much higher than that reported in many previous researches. Without using any complicated stabilizers or soft directing agents, the pure CdS nanocages fabricated by laser ablation will serve as advanced absorbents in further research.
11-5639/O4
LeLiu, Lin-LinXu, HuaZhang, and MingChen( School of Physics, Shandong University, Jinan 250100, China)
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/8/085206