A review on phase-field modeling of hydraulic fracturing
Motivated by the successful implementation of the phase-field method (PFM) to simulate complicated fracture patterns at moderate computational costs in solid materials, many research groups have started since 2012 applying the PFM to model hydraulic fracturing, especially that occurs in porous geoma...
Saved in:
Published in | Engineering fracture mechanics Vol. 253; p. 107881 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0013-7944 1873-7315 |
DOI | 10.1016/j.engfracmech.2021.107881 |
Cover
Summary: | Motivated by the successful implementation of the phase-field method (PFM) to simulate complicated fracture patterns at moderate computational costs in solid materials, many research groups have started since 2012 applying the PFM to model hydraulic fracturing, especially that occurs in porous geomaterials. These research works have contributed to the development of the PFM from different perspectives, especially in connection with the mathematical formulations of the hydro-mechanical processes and the numerical algorithms to solve the emerging coupled problems. In this regard, the underlying paper aims to review the significant scientific works that utilized the PFM to model fracturing caused mainly by fluid injection in a certain porous domain and, less common, by fluid extraction (e.g., drying) from a certain porous domain. This includes reviewing different approaches for deriving the phase-field evolution formulation (e.g. Ginzburg–Landau approach, thermodynamically consistent approaches, and microforce-based approach) and reviewing several formulations for the stiffness degradation function and that of the crack driving force. Besides, the paper will go through several methods to estimate the crack aperture width, in addition to reviewing different numerical approaches and implementations. The paper will be concluded by presenting a number of open topics and challenges to be addressed in future works.
•Reviewing the significant scientific works that utilized the phase-field method to model hydraulic fracturing.•Reviewing different approaches for deriving the phase-field evolution formulation.•Reviewing several methods to estimate the crack aperture width.•Reviewing different numerical approaches and implementations.•Discussing open topics and challenges to be addressed in future works on hydraulic fracture stimulation via the phase-field method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0013-7944 1873-7315 |
DOI: | 10.1016/j.engfracmech.2021.107881 |