kf Evaluation in GFRP Composites by Thermography

Since the presence of a notch in a mechanical component causes a reduction in the fatigue strength, it is important to know the kf value for a given notch geometry and material. This parameter is fundamental in the fatigue design of aeronautical components that are mainly made of composites. kf is a...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 11; p. 5200
Main Authors De Giorgi, Marta, Nobile, Riccardo, Palano, Fania
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app11115200

Cover

More Information
Summary:Since the presence of a notch in a mechanical component causes a reduction in the fatigue strength, it is important to know the kf value for a given notch geometry and material. This parameter is fundamental in the fatigue design of aeronautical components that are mainly made of composites. kf is available in the literature for numerous types of notch but only for traditional materials such as metals. This paper presents a new practice, based on thermographic data, for the determination of the fatigue notch coefficient kf in composite notched specimens. The innovative aspect of this study is therefore to propose the application on composite materials of a new thermographic procedure to determine kf for several notch geometries: circular, U and V soft and severe notches. It was calculated, for each type of notch, as the ratio between the fatigue limits obtained on the cold and hot zone corresponding to the smooth and notched specimen, respectively. Consequently, this research activity provides, for the first time, a little database of kf for two particular typologies of composite materials showing a fast way to collect further values for different laminates and notch geometries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app11115200