Chitosan–exosome synergy: Advanced cell-free scaffold approaches for bone tissue engineering

Bone regeneration and repair, which are hampered by fractures, bone diseases, and trauma, require innovative therapeutic strategies in the field of regenerative medicine. Conventional treatments, such as the use of autologous and allogeneic bone grafts and metal implants, are the primary modalities...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 304; no. Pt 1; p. 140753
Main Authors Suresh, Nivetha, Shanmugavadivu, Abinaya, Selvamurugan, Nagarajan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text
ISSN0141-8130
1879-0003
1879-0003
DOI10.1016/j.ijbiomac.2025.140753

Cover

More Information
Summary:Bone regeneration and repair, which are hampered by fractures, bone diseases, and trauma, require innovative therapeutic strategies in the field of regenerative medicine. Conventional treatments, such as the use of autologous and allogeneic bone grafts and metal implants, are the primary modalities for bone augmentation in clinical practice; however, they exhibit various limitations. To overcome these limitations, new paradigms, such as exosome-based therapies using chitosan scaffolds, exhibit significant potential for bone tissue engineering. Exosomes, which serve as cell-free therapeutic agents, promote immunomodulation, angiogenesis, and osteogenesis. Moreover, the distinct structural and functional properties of chitosan facilitate efficient exosome loading and sustained release, exerting localized and prolonged regenerative effects crucial for bone repair. Advanced scaffold modification and exosome mimetic integration are other innovative strategies to promote osteogenesis and vascularized bone regeneration. Focusing on these novel approaches, this review highlights chitosan–exosome scaffolds as transformative platforms for bone tissue engineering, providing new avenues for effective and targeted bone regeneration and repair.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2025.140753