Dissimilarity-Preserving Representation Learning for One-Class Time Series Classification

We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimila...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 10; pp. 13951 - 13962
Main Authors Mauceri, Stefano, Sweeney, James, Nicolau, Miguel, McDermott, James
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3273503

Cover

Abstract We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimilarity measures, e.g., dynamic time warping (DTW), that are central to time series classification (Bagnall et al., 2017). The learned representations are used in the context of one-class classification (Mauceri et al., 2020) on the datasets of UCR/UEA archive (Dau et al., 2019). Using a 1-nearest neighbor (1NN) classifier, we show that learned representations allow classification performance that is close to that of raw data, but in a space of substantially lower dimensionality. This implies substantial and compelling savings in terms of computational and storage requirements for nearest neighbor time series classification.
AbstractList We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimilarity measures, e.g., dynamic time warping (DTW), that are central to time series classification (Bagnall et al., 2017). The learned representations are used in the context of one-class classification (Mauceri et al., 2020) on the datasets of UCR/UEA archive (Dau et al., 2019). Using a 1-nearest neighbor (1NN) classifier, we show that learned representations allow classification performance that is close to that of raw data, but in a space of substantially lower dimensionality. This implies substantial and compelling savings in terms of computational and storage requirements for nearest neighbor time series classification.
We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimilarity measures, e.g., dynamic time warping (DTW), that are central to time series classification (Bagnall et al., 2017). The learned representations are used in the context of one-class classification (Mauceri et al., 2020) on the datasets of UCR/UEA archive (Dau et al., 2019). Using a 1-nearest neighbor (1NN) classifier, we show that learned representations allow classification performance that is close to that of raw data, but in a space of substantially lower dimensionality. This implies substantial and compelling savings in terms of computational and storage requirements for nearest neighbor time series classification.We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimilarity measures, e.g., dynamic time warping (DTW), that are central to time series classification (Bagnall et al., 2017). The learned representations are used in the context of one-class classification (Mauceri et al., 2020) on the datasets of UCR/UEA archive (Dau et al., 2019). Using a 1-nearest neighbor (1NN) classifier, we show that learned representations allow classification performance that is close to that of raw data, but in a space of substantially lower dimensionality. This implies substantial and compelling savings in terms of computational and storage requirements for nearest neighbor time series classification.
Author Sweeney, James
McDermott, James
Mauceri, Stefano
Nicolau, Miguel
Author_xml – sequence: 1
  givenname: Stefano
  orcidid: 0000-0001-9795-5310
  surname: Mauceri
  fullname: Mauceri, Stefano
  email: stefano.mauceri1@huawei-partners.com
  organization: Huawei Ireland Research Center, Dublin 2, Ireland
– sequence: 2
  givenname: James
  orcidid: 0000-0002-5649-3233
  surname: Sweeney
  fullname: Sweeney, James
  email: james.a.sweeney@ul.ie
  organization: Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
– sequence: 3
  givenname: Miguel
  orcidid: 0000-0002-1981-1300
  surname: Nicolau
  fullname: Nicolau, Miguel
  email: miguel.nicolau@ucd.ie
  organization: School of Business, University College Dublin, Dublin 4, Ireland
– sequence: 4
  givenname: James
  orcidid: 0000-0002-1402-6995
  surname: McDermott
  fullname: McDermott, James
  email: james.mcdermott@universityofgalway.ie
  organization: School of Computer Science, University of Galway, Galway, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37204959$$D View this record in MEDLINE/PubMed
BookMark eNpNkMlKA0EQhhtRNEZfQETm6GVid_U2fZS4QkhEI-hp6PTUSMsssXsi5O3NpliXWvj-OnzHZL9pGyTkjNEBY9RcTcfj0csAKPABB80l5XukB0xBCjzL9v9m_XZETmP8pKtSVCphDskR10CFkaZH3m98jL72lQ2-W6ZPASOGb998JM84Xy9NZzvfNskIbWjW97INyaTBdFjZGJOprzF5weAxJpuLL73bJE7IQWmriKe73ievd7fT4UM6mtw_Dq9HqQMtu7TQTrlSYebAUsysLGSRCcFnVohZYbQ16EqjJQgutJZOMUCaMQvWOQtG8T653P6dh_ZrgbHLax8dVpVtsF3EHDKmtBJayRV6sUMXsxqLfB58bcMy_9WxAmALuNDGGLD8QxjN19rzjfZ8rT3faV-Fzrchj4j_AgwMSM1_AOFbfsk
CODEN ITNNAL
Cites_doi 10.1145/2500489
10.1007/s10710-021-09403-x
10.1007/s10618-010-0179-5
10.1109/TNNLS.2020.3025813
10.1007/s10618-016-0483-9
10.1016/j.micpro.2021.104374
10.1007/s00453-022-00968-2
10.1109/CVPR.2006.100
10.1007/s10618-020-00685-w
10.1109/ICASSP.2018.8461684
10.1007/978-3-319-72926-8_48
10.1201/b11431
10.1007/978-3-540-33037-0_14
10.1109/TCSVT.2017.2711015
10.1016/0893-6080(89)90020-8
10.1371/journal.pone.0254841
10.1016/j.is.2015.04.007
10.1109/CVPR.2016.90
10.1109/ACCESS.2019.2916828
10.1109/TNNLS.2019.2935975
10.1016/j.patcog.2019.107122
10.1109/LGRS.2019.2909218
10.1109/CVPR.2015.7298682
10.1145/3182382
10.1109/IJCNN48605.2020.9206721
10.1007/s10479-012-1077-6
10.1007/978-3-319-68765-0_17
10.1145/1390156.1390294
10.1007/978-3-642-30504-7_8
10.1109/TNNLS.2020.3027736
10.3390/cryptography5040028
10.1109/TNNLS.2020.3044215
10.1609/aaai.v31i1.11231
10.1109/JAS.2019.1911747
10.1007/978-3-319-18032-8_42
10.1007/s10618-020-00710-y
10.1109/TKDE.2012.88
10.1016/j.patcog.2017.10.013
10.48550/arXiv.1312.6114
10.1007/978-3-319-05278-6
10.1109/ACCESS.2021.3101741
10.1109/GlobalSIP.2017.8308653
10.24963/ijcai.2019/394
10.1007/s10618-019-00619-1
10.1145/3318464.3389760
10.1016/j.eswa.2014.11.007
10.1109/IJCNN48605.2020.9206860
10.1109/ICCAIRO.2017.17
10.1109/tnnls.2022.3183252
10.1007/s10618-013-0322-1
10.1109/IJCNN.2017.7966039
10.1109/TCYB.2015.2426723
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2015.7298594
10.1142/9789812797926_0003
10.48550/ARXIV.1706.03762
10.1007/s10618-018-0596-4
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3273503
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 13962
ExternalDocumentID 37204959
10_1109_TNNLS_2023_3273503
10129257
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ICON plc
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c275t-d7c6cf6e8c2a0e8a5d5d8443ba44bd97a9ecf9752434775c612e081a2acca2963
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 07:44:33 EDT 2025
Mon Jul 21 05:49:04 EDT 2025
Wed Oct 01 00:45:13 EDT 2025
Wed Aug 27 02:33:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-d7c6cf6e8c2a0e8a5d5d8443ba44bd97a9ecf9752434775c612e081a2acca2963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1402-6995
0000-0001-9795-5310
0000-0002-5649-3233
0000-0002-1981-1300
PMID 37204959
PQID 2816764765
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TNNLS_2023_3273503
ieee_primary_10129257
pubmed_primary_37204959
proquest_miscellaneous_2816764765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References Qiu (ref6) 2018
ref13
ref12
ref15
Dumoulin (ref57) 2016
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Dey (ref70) 2019
Che (ref30)
Goodfellow (ref55) 2016
ref50
Kingma (ref63) 2014
ref46
ref45
ref48
Le (ref34)
ref41
Sak (ref25) 2014
ref44
Tobias Springenberg (ref56) 2014
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref40
ref36
ref31
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref73
ref72
Abid (ref43)
Pei (ref35) 2016
ref24
ref68
ref23
ref67
ref26
ref69
ref20
ref64
ref22
ref66
ref21
Glorot (ref62)
Abadi (ref65) 2015
ref28
ref27
Baldi (ref51)
ref29
McFee (ref42)
Salakhutdinov (ref37)
ref60
Sehwag (ref75) 2021
van der Maaten (ref47) 2008; 9
ref61
References_xml – year: 2014
  ident: ref56
  article-title: Striving for simplicity: The all convolutional net
  publication-title: arXiv:1412.6806
– ident: ref66
  doi: 10.1145/2500489
– ident: ref49
  doi: 10.1007/s10710-021-09403-x
– year: 2018
  ident: ref6
  article-title: Learning correlation space for time series
  publication-title: arXiv:1802.03628
– ident: ref58
  doi: 10.1007/s10618-010-0179-5
– start-page: 1
  volume-title: Proc. KDD Workshop Mining Learn. Time Ser.
  ident: ref30
  article-title: Decade: A deep metric learning model for multivariate time series
– ident: ref26
  doi: 10.1109/TNNLS.2020.3025813
– volume-title: Wearable and Implantable Medical Devices: Applications and Challenges
  year: 2019
  ident: ref70
– ident: ref1
  doi: 10.1007/s10618-016-0483-9
– year: 2014
  ident: ref25
  article-title: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition
  publication-title: arXiv:1402.1128
– ident: ref71
  doi: 10.1016/j.micpro.2021.104374
– year: 2021
  ident: ref75
  article-title: SSD: A unified framework for self-supervised outlier detection
  publication-title: arXiv:2103.12051
– ident: ref53
  doi: 10.1007/s00453-022-00968-2
– ident: ref39
  doi: 10.1109/CVPR.2006.100
– start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref62
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref7
  doi: 10.1007/s10618-020-00685-w
– ident: ref40
  doi: 10.1109/ICASSP.2018.8461684
– start-page: 775
  volume-title: Proc. 27th Int. Conf. Mach. Learn. (ICML)
  ident: ref42
  article-title: Metric learning to rank
– ident: ref13
  doi: 10.1007/978-3-319-72926-8_48
– ident: ref14
  doi: 10.1201/b11431
– year: 2016
  ident: ref57
  article-title: A guide to convolution arithmetic for deep learning
  publication-title: arXiv:1603.07285
– ident: ref10
  doi: 10.1007/978-3-540-33037-0_14
– ident: ref15
  doi: 10.1109/TCSVT.2017.2711015
– ident: ref12
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref28
  doi: 10.1371/journal.pone.0254841
– ident: ref5
  doi: 10.1016/j.is.2015.04.007
– ident: ref18
  doi: 10.1109/CVPR.2016.90
– ident: ref64
  doi: 10.1109/ACCESS.2019.2916828
– ident: ref50
  doi: 10.1109/TNNLS.2019.2935975
– ident: ref2
  doi: 10.1016/j.patcog.2019.107122
– ident: ref33
  doi: 10.1109/LGRS.2019.2909218
– ident: ref41
  doi: 10.1109/CVPR.2015.7298682
– ident: ref22
  doi: 10.1145/3182382
– ident: ref23
  doi: 10.1109/IJCNN48605.2020.9206721
– year: 2016
  ident: ref35
  article-title: Modeling time series similarity with Siamese recurrent networks
  publication-title: arXiv:1603.04713
– ident: ref8
  doi: 10.1007/s10479-012-1077-6
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref47
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.1007/978-3-319-68765-0_17
– year: 2014
  ident: ref63
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref52
  doi: 10.1145/1390156.1390294
– ident: ref24
  doi: 10.1007/978-3-642-30504-7_8
– ident: ref32
  doi: 10.1109/TNNLS.2020.3027736
– ident: ref72
  doi: 10.3390/cryptography5040028
– start-page: 107
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Supervised autoencoders: Improving generalization performance with unsupervised regularizers
– ident: ref27
  doi: 10.1109/TNNLS.2020.3044215
– ident: ref21
  doi: 10.1609/aaai.v31i1.11231
– ident: ref3
  doi: 10.1109/JAS.2019.1911747
– ident: ref36
  doi: 10.1007/978-3-319-18032-8_42
– ident: ref20
  doi: 10.1007/s10618-020-00710-y
– ident: ref54
  doi: 10.1109/TKDE.2012.88
– ident: ref19
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref61
  doi: 10.48550/arXiv.1312.6114
– ident: ref69
  doi: 10.1007/978-3-319-05278-6
– ident: ref74
  doi: 10.1109/ACCESS.2021.3101741
– ident: ref67
  doi: 10.1109/GlobalSIP.2017.8308653
– ident: ref46
  doi: 10.24963/ijcai.2019/394
– ident: ref16
  doi: 10.1007/s10618-019-00619-1
– ident: ref9
  doi: 10.1145/3318464.3389760
– start-page: 412
  volume-title: Proc. Artif. Intell. Statist.
  ident: ref37
  article-title: Learning a nonlinear embedding by preserving class neighbourhood structure
– ident: ref73
  doi: 10.1016/j.eswa.2014.11.007
– ident: ref29
  doi: 10.1109/IJCNN48605.2020.9206860
– ident: ref38
  doi: 10.1109/ICCAIRO.2017.17
– start-page: 37
  volume-title: Proc. ICML Workshop Unsupervised Transf. Learn.
  ident: ref51
  article-title: Autoencoders, unsupervised learning, and deep architectures
– ident: ref31
  doi: 10.1109/tnnls.2022.3183252
– ident: ref45
  doi: 10.1007/s10618-013-0322-1
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: ref65
– ident: ref17
  doi: 10.1109/IJCNN.2017.7966039
– start-page: 10547
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Learning a warping distance from unlabeled time series using sequence autoencoders
– ident: ref48
  doi: 10.1109/TCYB.2015.2426723
– ident: ref59
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref60
  doi: 10.1109/CVPR.2015.7298594
– ident: ref11
  doi: 10.1142/9789812797926_0003
– ident: ref68
  doi: 10.48550/ARXIV.1706.03762
– ident: ref4
  doi: 10.1007/s10618-018-0596-4
– volume-title: Deep Learning
  year: 2016
  ident: ref55
SSID ssj0000605649
Score 2.4921029
Snippet We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 13951
SubjectTerms Approximation algorithms
Autoencoders
Autoencoders (AEs)
Convolutional neural networks
Neural networks
one-class classification
Representation learning
Time measurement
Time series analysis
time series classification
Title Dissimilarity-Preserving Representation Learning for One-Class Time Series Classification
URI https://ieeexplore.ieee.org/document/10129257
https://www.ncbi.nlm.nih.gov/pubmed/37204959
https://www.proquest.com/docview/2816764765
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6VPfUCtOWxpa1ciRtKCI4f8RG1rFaIbiVgpeUUOc6AECKLyu6lv54ZJ0ErpJW4RVEcJ56x_c14Zj6Aw6wqkBZGyz6AKlHaZYkLHEylPBeUUkpZznf-MzHjqTqf6VmXrB5zYRAxBp9hypfxLL-ehyW7yo65FpUjHduADVuYNlnr1aGSETA3Ee7KEyMTmdtZnySTuePryeTiKmWu8DSnHVtnTKATGVoclyld2ZMiycp6vBn3ndEWTPovbsNNHtLlokrD_zfFHN_9S9uw2SFQcdqqzCf4gM1n2OrZHUQ32b_AzW-Syf3jPZm-hNQTjtXgdaW5E5cxerZLWmpEV6L1ThD-FX8bTCLRpuDkEsHON3wW8Q4HJcUWOzAdnV3_GicdEUMSpNWLpLbBhFuDRZA-w8LrWteFUnnllapqZ73DcOuslipX1upAqAkJanjpST8kTfFdGDTzBvdBqNzXbJVag1YZ7T0GQilV4ainkHk_hKNeFOVTW2-jjHZK5soow5JlWHYyHMIOD-nKk-1oDuFnL76SpgufgfgG58vnUhYnxhpljR7CXivX19a9Onxd89YD-EidqzaU7xsMFv-W-J0gyaL6EVXxBSXG2kE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALtDyXvlyptyohOH7Ex6ot2pYlldpFWk6R4wwIVc0i2L3w6zvjJAghIXGLotixPWP78_ibGYBPWV0gLYyWbQB1orTLEheYTKU8B5RSSln2dz4tzfhM_ZzpWe-sHn1hEDGSzzDlx3iX38zDkk1lhxyLypGOrcBLTbXozl3r3qSSETQ3EfDKIyMTmdvZ4CaTucNpWU7-pJwtPM1pz9YZp9CJOVocByp9sCvFNCtPI8648xxvQjm0uSOc_E2XizoNd4_COT67U69go8eg4kunNK_hBbZbsDnkdxD9dN-G828klat_V3T4JayeMFuDV5b2UvyO_NnebakVfZDWS0EIWPxqMYmpNgW7lwg2v-GtiG-YlhRL7MDZ8ffp13HSp2JIgrR6kTQ2mHBhsAjSZ1h43eimUCqvvVJ146x3GC6c1VLlylodCDchgQ0vPWmIpEm-C6vtvMV9ECr3DZ9LrUGrjPYeA-GUunD0p5B5P4LPgyiq6y7iRhVPKpmrogwrlmHVy3AEOzykD77sRnMEHwfxVTRh-BbEtzhf3layODLWKGv0CPY6ud6XHtTh4IlaP8DaeHo6qSY_ypM3sE4NUR2x7y2sLm6W-I4AyqJ-H9XyP70j3Y4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissimilarity-Preserving+Representation+Learning+for+One-Class+Time+Series+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Mauceri%2C+Stefano&rft.au=Sweeney%2C+James&rft.au=Nicolau%2C+Miguel&rft.au=McDermott%2C+James&rft.date=2024-10-01&rft.eissn=2162-2388&rft.volume=35&rft.issue=10&rft.spage=13951&rft_id=info:doi/10.1109%2FTNNLS.2023.3273503&rft_id=info%3Apmid%2F37204959&rft.externalDocID=37204959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon