Dissimilarity-Preserving Representation Learning for One-Class Time Series Classification

We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimila...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 10; pp. 13951 - 13962
Main Authors Mauceri, Stefano, Sweeney, James, Nicolau, Miguel, McDermott, James
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3273503

Cover

More Information
Summary:We propose to embed time series in a latent space where pairwise Euclidean distances (EDs) between samples are equal to pairwise dissimilarities in the original space, for a given dissimilarity measure. To this end, we use auto-encoder (AE) and encoder-only neural networks to learn elastic dissimilarity measures, e.g., dynamic time warping (DTW), that are central to time series classification (Bagnall et al., 2017). The learned representations are used in the context of one-class classification (Mauceri et al., 2020) on the datasets of UCR/UEA archive (Dau et al., 2019). Using a 1-nearest neighbor (1NN) classifier, we show that learned representations allow classification performance that is close to that of raw data, but in a space of substantially lower dimensionality. This implies substantial and compelling savings in terms of computational and storage requirements for nearest neighbor time series classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2023.3273503