Semi-Supervised Knee Cartilage Segmentation With Successive Eigen Noise-Assisted Mean Teacher Knowledge Distillation
Knee cartilage segmentation for Knee Osteoarthritis (OA) diagnosis is challenging due to domain shifts from varying MRI scanning technologies. Existing cross-modality approaches often use paired order matching or style translation techniques to align features. Still, these methods can sacrifice disc...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 44; no. 7; pp. 3051 - 3063 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2025.3556870 |
Cover
| Summary: | Knee cartilage segmentation for Knee Osteoarthritis (OA) diagnosis is challenging due to domain shifts from varying MRI scanning technologies. Existing cross-modality approaches often use paired order matching or style translation techniques to align features. Still, these methods can sacrifice discrimination in less prominent cartilages and overlook critical higher-order correlations and semantic information. To address this issue, we propose a novel framework called Successive Eigen Noise-assisted Mean Teacher Knowledge Distillation (SEN-MTKD) for adapting 2D knee MRI images across different modalities using partially labeled data. Our approach includes the Eigen Low-rank Subspace (ELRS) module, which employs low-rank approximations to generate meaningful pseudo-labels from domain-invariant feature representations progressively. Complementing this, the Successive Eigen Noise (SEN) module introduces advanced data perturbation to enhance discrimination and diversity in small cartilage classes. Additionally, we propose a subspace-based feature distillation loss mechanism (LRBD) to manage variance and leverage rich intermediate representations within the teacher model, ensuring robust feature representation and labeling. Our framework identifies a mutual cross-domain subspace using higher-order structures and lower energy latent features, providing reliable supervision for the student model. Extensive experiments on public and private datasets demonstrate the effectiveness of our method over state-of-the-art benchmarks. The code is available at github.com/AmmarKhawer/SEN-MTKD. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0278-0062 1558-254X 1558-254X |
| DOI: | 10.1109/TMI.2025.3556870 |