STARTS: A Self-Adapted Spatio-Temporal Framework for Automatic E/MEG Source Imaging
To obtain accurate brain source activities, the highly ill-posed source imaging of electro- and magneto-encephalography (E/MEG) requires proficiency in incorporation of biophysiological constraints and signal-processing techniques. Here, we propose a spatio-temporal-constrainted E/MEG source imaging...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 44; no. 3; pp. 1230 - 1242 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2024.3483292 |
Cover
| Summary: | To obtain accurate brain source activities, the highly ill-posed source imaging of electro- and magneto-encephalography (E/MEG) requires proficiency in incorporation of biophysiological constraints and signal-processing techniques. Here, we propose a spatio-temporal-constrainted E/MEG source imaging framework-STARTS that can reconstruct the source in a fully automatic way. Specifically, a block-diagonal covariance was adopted to reconstruct the source extents while maintain spatial homogeneity. Temporal basis functions (TBFs) of both sources and noise were estimated and updated in a data-driven fashion to alleviate the influence of noises and further improve source localization accuracy. The performance of the proposed STARTS was quantitatively assessed through a series of simulation experiments, wherein superior results were obtained in comparison with the benchmark ESI algorithms (including LORETA, EBI-Convex, BESTIES & SI-STBF). Additional validations on epileptic and resting-state EEG data further indicate that the STARTS can produce neurophysiologically plausible results. Moreover, a computationally efficient version of STARTS: smooth STARTS was also introduced with an elementary spatial constraint, which exhibited comparable performance and reduced execution cost. In sum, the proposed STARTS, with its advanced spatio-temporal constraints and self-adapted update operation, provides an effective and efficient approach for E/MEG source imaging. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0278-0062 1558-254X 1558-254X |
| DOI: | 10.1109/TMI.2024.3483292 |