LMS-Based Background Calibration of Bit Weights in SAR ADC Using Reinforcement Learning Optimization

This paper presents a least-mean-square-based (LMS-based) background calibration algorithm with reinforcement learning optimization to calibrate the capacitor mismatch in successive approximation-register (SAR) analog-to-digital converters (ADCs). When calibrating capacitor mismatch, the convergence...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 43; no. 3; pp. 1741 - 1754
Main Authors Song, Xinyan, Meng, Qiao, Huang, Yujia, Zong, Chenchen, Meng, Yishuo
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
DOI10.1007/s00034-023-02536-7

Cover

Abstract This paper presents a least-mean-square-based (LMS-based) background calibration algorithm with reinforcement learning optimization to calibrate the capacitor mismatch in successive approximation-register (SAR) analog-to-digital converters (ADCs). When calibrating capacitor mismatch, the convergence speed and stability of the conventional LMS-based algorithm cannot be balanced due to the fixed iteration step size. To improve the calibration effect, nine different iteration step sizes are proposed for calibration. An iteration step size selection strategy is obtained by training the Q-learning algorithm with the conventional LMS-based calibration iteration process. Leading by this strategy, the proposed calibration algorithm performs better convergence speed and stability than the conventional LMS-based calibration algorithm. A 12-bit sub-radix-2 redundant SAR ADC is used to test our proposed calibration algorithm for better evaluation. Behavioral simulations show that the proposed calibration algorithm converges at 0.065 M sampling points, and the standard deviation of the effective number of bits (ENOB) in the convergence state is only 0.034-bit.
AbstractList This paper presents a least-mean-square-based (LMS-based) background calibration algorithm with reinforcement learning optimization to calibrate the capacitor mismatch in successive approximation-register (SAR) analog-to-digital converters (ADCs). When calibrating capacitor mismatch, the convergence speed and stability of the conventional LMS-based algorithm cannot be balanced due to the fixed iteration step size. To improve the calibration effect, nine different iteration step sizes are proposed for calibration. An iteration step size selection strategy is obtained by training the Q-learning algorithm with the conventional LMS-based calibration iteration process. Leading by this strategy, the proposed calibration algorithm performs better convergence speed and stability than the conventional LMS-based calibration algorithm. A 12-bit sub-radix-2 redundant SAR ADC is used to test our proposed calibration algorithm for better evaluation. Behavioral simulations show that the proposed calibration algorithm converges at 0.065 M sampling points, and the standard deviation of the effective number of bits (ENOB) in the convergence state is only 0.034-bit.
This paper presents a least-mean-square-based (LMS-based) background calibration algorithm with reinforcement learning optimization to calibrate the capacitor mismatch in successive approximation-register (SAR) analog-to-digital converters (ADCs). When calibrating capacitor mismatch, the convergence speed and stability of the conventional LMS-based algorithm cannot be balanced due to the fixed iteration step size. To improve the calibration effect, nine different iteration step sizes are proposed for calibration. An iteration step size selection strategy is obtained by training the Q-learning algorithm with the conventional LMS-based calibration iteration process. Leading by this strategy, the proposed calibration algorithm performs better convergence speed and stability than the conventional LMS-based calibration algorithm. A 12-bit sub-radix-2 redundant SAR ADC is used to test our proposed calibration algorithm for better evaluation. Behavioral simulations show that the proposed calibration algorithm converges at 0.065 M sampling points, and the standard deviation of the effective number of bits (ENOB) in the convergence state is only 0.034-bit.
Author Song, Xinyan
Meng, Qiao
Meng, Yishuo
Zong, Chenchen
Huang, Yujia
Author_xml – sequence: 1
  givenname: Xinyan
  surname: Song
  fullname: Song, Xinyan
  organization: Institute of Radio Frequency and Optoelectronic Integrated Circuits, Southeast University
– sequence: 2
  givenname: Qiao
  orcidid: 0000-0002-8075-7171
  surname: Meng
  fullname: Meng, Qiao
  email: mengqiao@seu.edu.cn
  organization: Institute of Radio Frequency and Optoelectronic Integrated Circuits, Southeast University
– sequence: 3
  givenname: Yujia
  surname: Huang
  fullname: Huang, Yujia
  organization: Institute of Radio Frequency and Optoelectronic Integrated Circuits, Southeast University
– sequence: 4
  givenname: Chenchen
  surname: Zong
  fullname: Zong, Chenchen
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Yishuo
  surname: Meng
  fullname: Meng, Yishuo
  organization: School of Microelectronics, Xi’an Jiaotong University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTzW43e2zXT1gptBa9hTQfa2qb1GR70F_vthW8eRgGhud9B54B6jnvNEKXBK4JQHETAYBmCaS0m5yOkuIE9UlOSZKzgvVQH9KCJcDI2xkaxLgCIGVWpn2k6ud5MhFRKzwR8qMJfucUrsTaLoNorXfYGzyxLX7VtnlvI7YOz8czPL6t8CJa1-CZts74IPVGuxbXWgS3P0-3rd3Y70PHOTo1Yh31xe8eosX93Uv1mNTTh6dqXCcyLaBNjMqAFuWIkVQQmksmZQGMKUoEKCVyodnSlBokGUlFl5IxI0lmBBXUKCaADtHVsXcb_OdOx5av_C647iVPS0pYDmVKOio9UjL4GIM2fBvsRoQvToDvbfKjTd7Z5AebvOhC9BiKHewaHf6q_0n9AGxeeXA
Cites_doi 10.1109/VLSIC.2014.6858371
10.1049/ell2.12659
10.1109/ICMLA.2019.00160
10.1109/JSSC.2014.2364833
10.1109/ICSICT.2018.8564891
10.1109/TCSI.2022.3166792
10.1109/ISCAS51556.2021.9401172
10.1109/JSSC.2017.2656138
10.1109/AIAM54119.2021.00063
10.1109/CICC.2019.8780222
10.1109/TCSI.2011.2123590
10.1109/A-SSCC47793.2019.9056925
10.1007/s00034-022-02266-2
10.1109/CICC.2012.6330694
10.1109/ASSCC.2018.8579318
10.1109/JSSC.2011.2163556
10.1109/ISCAS51556.2021.9401732
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00034-023-02536-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 1754
ExternalDocumentID 10_1007_s00034_023_02536_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c270t-fd403796812a135c8cc7088d31a0dda5ae8bf9e0c16cd3bc88fc14fa3a3fd8a03
IEDL.DBID U2A
ISSN 0278-081X
IngestDate Sat Aug 23 13:49:15 EDT 2025
Wed Oct 01 01:31:43 EDT 2025
Fri Feb 21 02:40:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords LMS-based background calibration
Q-learning
Capacitor mismatch
Iteration step size selection strategy
Reinforcement learning
SAR ADC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-fd403796812a135c8cc7088d31a0dda5ae8bf9e0c16cd3bc88fc14fa3a3fd8a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8075-7171
PQID 2931850921
PQPubID 30136
PageCount 14
ParticipantIDs proquest_journals_2931850921
crossref_primary_10_1007_s00034_023_02536_7
springer_journals_10_1007_s00034_023_02536_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References W. Liu, P. Huang, Y. Chiu, A 12-bit 50-MS/s 3.3-mW SAR ADC with Background Digital Calibration, in Process of the IEEE 2012 Custom Integrated Circuits Conference (IEEE, 2012), pp. 1–4
H. Fan, Y. Wang, Q. Wei et al., Capacitor recombination algorithm combined with LMS algorithm in 16-bit SAR ADC with redundancy. Circuits Syst Signal Process (2023)
TangXLiuJLiSLow-power SAR ADC design: overview and survey of state-of-the-art techniquesIEEE Trans. Circuits Syst. I Regul. Pap.20226962249226210.1109/TCSI.2022.3166792
WangXLiFWangZA simple histogram-based capacitor mismatch calibration in SAR ADCsIEEE Trans. Circuits Syst. II Express Briefs2020671228382842
L. Zhang, J. Wu, Background Calibration in Pipelined SAR ADCs Exploiting PVT-Tracking Metastability Detector, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2021), pp. 1–5
McNeillJAChanKYColnMCWAll-digital background calibration of a successive approximation ADC using the “Split ADC” architectureIEEE Trans. Circuits Syst. I Regul. Pap.2011581023552365288501710.1109/TCSI.2011.2123590
YangYYinTLiuJA low-cost digital calibration scheme for high-resolution SAR ADC using adaptive-LMSElectron. Lett.202258259499512022ElL....58..949Y10.1049/ell2.12659
H. Garvik, C. Wulff, T. Ytterdal, A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip CDAC Calibration, in 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, 2019), pp. 193–194
Y.-S. Hu, J.-H. Lin, D.-G. Lin et al., An 89.55dB-SFDR 179.6dB-FoMs 12-bit lMS/s SAR-assisted SAR ADC with Weight-Split Compensation Calibration, in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, 2018), pp. 253–256
Z. Lan, L. Dong, X. Jing et al., A 12-Bit 100MS/s SAR ADC with Digital Error Correction and High-Speed LMS-Based Background Calibration, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2021), pp. 1–5
Y.-H. Chung, C.-Y. Hu, C.-W. Chang, A 38-mW 7-bit 5-GS/s Time-Interleaved SAR ADC with Background Skew Calibration, in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, 2018), pp. 243–246
HongH-KKimWKangH-WA decision-error-tolerant 45 nm CMOS 7b 1 GS/s nonbinary 2b/Cycle SAR ADCIEEE J. Solid-State Circuits20155025435552015IJSSC..50..543H10.1109/JSSC.2014.2364833
ChenLTangXSanyalAA 0.7-V 0.6-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}W 100-kS/s low-power SAR ADC with statistical estimation-based noise reductionIEEE J. Solid State Circuits2017525138813982017IJSSC..52.1388C10.1109/JSSC.2017.2656138
A. Bannon, C.P. Hurrell, D. Hummerston et al., An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range, in 2014 Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2
LiuWHuangPChiuYA 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibrationIEEE J. Solid State Circuits20114611266126722011IJSSC..46.2661L10.1109/JSSC.2011.2163556
DingXZhangLLiuWA pattern extraction based background calibration technique for SAR ADCsIEEE Trans. Circuits Syst. II Express Briefs20226911014
X. Peng, T. Fu, Q. Bao et al., A New Capacitor Mismatch Calibration Technique for SAR ADCs, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (IEEE, 2018), pp. 1–4
M. Guo, J. Mao, S. -W. Sin et al., A 10b 1.6GS/s 12.2mW 7/8-way Split Time-interleaved SAR ADC with Digital Background Mismatch Calibration, in 2019 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, 2019), pp. 1–4
ZhangLWangPSunJCorrelation-based background calibration of bit weight in SAR ADCs using DAS algorithmIEEE Trans. Circuits Syst. II Express Briefs202168410631067
Y. Sun, Performance of Reinforcement Learning on Traditional Video Games, in 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM) (IEEE, 2021), pp. 276–279
N.L. Kuang, C.H.C. Leung, Performance Effectiveness of Multimedia Information Search Using the Epsilon-Greedy Algorithm, in 2019 18th IEEE International Conference On Machine Learning and Applications (ICMLA) (IEEE, 2019), pp. 929–936
2536_CR9
W Liu (2536_CR12) 2011; 46
X Ding (2536_CR4) 2022; 69
Y Yang (2536_CR19) 2022; 58
L Chen (2536_CR2) 2017; 52
H-K Hong (2536_CR8) 2015; 50
L Zhang (2536_CR21) 2021; 68
JA McNeill (2536_CR14) 2011; 58
2536_CR11
X Wang (2536_CR18) 2020; 67
2536_CR13
2536_CR16
2536_CR15
2536_CR1
2536_CR3
X Tang (2536_CR17) 2022; 69
2536_CR5
2536_CR7
2536_CR10
2536_CR6
2536_CR20
References_xml – reference: ZhangLWangPSunJCorrelation-based background calibration of bit weight in SAR ADCs using DAS algorithmIEEE Trans. Circuits Syst. II Express Briefs202168410631067
– reference: W. Liu, P. Huang, Y. Chiu, A 12-bit 50-MS/s 3.3-mW SAR ADC with Background Digital Calibration, in Process of the IEEE 2012 Custom Integrated Circuits Conference (IEEE, 2012), pp. 1–4
– reference: N.L. Kuang, C.H.C. Leung, Performance Effectiveness of Multimedia Information Search Using the Epsilon-Greedy Algorithm, in 2019 18th IEEE International Conference On Machine Learning and Applications (ICMLA) (IEEE, 2019), pp. 929–936
– reference: X. Peng, T. Fu, Q. Bao et al., A New Capacitor Mismatch Calibration Technique for SAR ADCs, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (IEEE, 2018), pp. 1–4
– reference: HongH-KKimWKangH-WA decision-error-tolerant 45 nm CMOS 7b 1 GS/s nonbinary 2b/Cycle SAR ADCIEEE J. Solid-State Circuits20155025435552015IJSSC..50..543H10.1109/JSSC.2014.2364833
– reference: A. Bannon, C.P. Hurrell, D. Hummerston et al., An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range, in 2014 Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2
– reference: ChenLTangXSanyalAA 0.7-V 0.6-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}W 100-kS/s low-power SAR ADC with statistical estimation-based noise reductionIEEE J. Solid State Circuits2017525138813982017IJSSC..52.1388C10.1109/JSSC.2017.2656138
– reference: WangXLiFWangZA simple histogram-based capacitor mismatch calibration in SAR ADCsIEEE Trans. Circuits Syst. II Express Briefs2020671228382842
– reference: Y.-S. Hu, J.-H. Lin, D.-G. Lin et al., An 89.55dB-SFDR 179.6dB-FoMs 12-bit lMS/s SAR-assisted SAR ADC with Weight-Split Compensation Calibration, in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, 2018), pp. 253–256
– reference: YangYYinTLiuJA low-cost digital calibration scheme for high-resolution SAR ADC using adaptive-LMSElectron. Lett.202258259499512022ElL....58..949Y10.1049/ell2.12659
– reference: Z. Lan, L. Dong, X. Jing et al., A 12-Bit 100MS/s SAR ADC with Digital Error Correction and High-Speed LMS-Based Background Calibration, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2021), pp. 1–5
– reference: M. Guo, J. Mao, S. -W. Sin et al., A 10b 1.6GS/s 12.2mW 7/8-way Split Time-interleaved SAR ADC with Digital Background Mismatch Calibration, in 2019 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, 2019), pp. 1–4
– reference: H. Garvik, C. Wulff, T. Ytterdal, A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip CDAC Calibration, in 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, 2019), pp. 193–194
– reference: DingXZhangLLiuWA pattern extraction based background calibration technique for SAR ADCsIEEE Trans. Circuits Syst. II Express Briefs20226911014
– reference: Y.-H. Chung, C.-Y. Hu, C.-W. Chang, A 38-mW 7-bit 5-GS/s Time-Interleaved SAR ADC with Background Skew Calibration, in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, 2018), pp. 243–246
– reference: L. Zhang, J. Wu, Background Calibration in Pipelined SAR ADCs Exploiting PVT-Tracking Metastability Detector, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2021), pp. 1–5
– reference: LiuWHuangPChiuYA 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibrationIEEE J. Solid State Circuits20114611266126722011IJSSC..46.2661L10.1109/JSSC.2011.2163556
– reference: TangXLiuJLiSLow-power SAR ADC design: overview and survey of state-of-the-art techniquesIEEE Trans. Circuits Syst. I Regul. Pap.20226962249226210.1109/TCSI.2022.3166792
– reference: H. Fan, Y. Wang, Q. Wei et al., Capacitor recombination algorithm combined with LMS algorithm in 16-bit SAR ADC with redundancy. Circuits Syst Signal Process (2023)
– reference: McNeillJAChanKYColnMCWAll-digital background calibration of a successive approximation ADC using the “Split ADC” architectureIEEE Trans. Circuits Syst. I Regul. Pap.2011581023552365288501710.1109/TCSI.2011.2123590
– reference: Y. Sun, Performance of Reinforcement Learning on Traditional Video Games, in 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM) (IEEE, 2021), pp. 276–279
– ident: 2536_CR1
  doi: 10.1109/VLSIC.2014.6858371
– volume: 68
  start-page: 1063
  issue: 4
  year: 2021
  ident: 2536_CR21
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 69
  start-page: 10
  issue: 1
  year: 2022
  ident: 2536_CR4
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 58
  start-page: 949
  issue: 25
  year: 2022
  ident: 2536_CR19
  publication-title: Electron. Lett.
  doi: 10.1049/ell2.12659
– ident: 2536_CR10
  doi: 10.1109/ICMLA.2019.00160
– volume: 50
  start-page: 543
  issue: 2
  year: 2015
  ident: 2536_CR8
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2014.2364833
– ident: 2536_CR15
  doi: 10.1109/ICSICT.2018.8564891
– volume: 69
  start-page: 2249
  issue: 6
  year: 2022
  ident: 2536_CR17
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2022.3166792
– ident: 2536_CR11
  doi: 10.1109/ISCAS51556.2021.9401172
– volume: 52
  start-page: 1388
  issue: 5
  year: 2017
  ident: 2536_CR2
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2017.2656138
– ident: 2536_CR9
– ident: 2536_CR16
  doi: 10.1109/AIAM54119.2021.00063
– ident: 2536_CR7
  doi: 10.1109/CICC.2019.8780222
– volume: 58
  start-page: 2355
  issue: 10
  year: 2011
  ident: 2536_CR14
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2011.2123590
– ident: 2536_CR6
  doi: 10.1109/A-SSCC47793.2019.9056925
– volume: 67
  start-page: 2838
  issue: 12
  year: 2020
  ident: 2536_CR18
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– ident: 2536_CR5
  doi: 10.1007/s00034-022-02266-2
– ident: 2536_CR13
  doi: 10.1109/CICC.2012.6330694
– ident: 2536_CR3
  doi: 10.1109/ASSCC.2018.8579318
– volume: 46
  start-page: 2661
  issue: 11
  year: 2011
  ident: 2536_CR12
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2011.2163556
– ident: 2536_CR20
  doi: 10.1109/ISCAS51556.2021.9401732
SSID ssj0019492
Score 2.3408957
Snippet This paper presents a least-mean-square-based (LMS-based) background calibration algorithm with reinforcement learning optimization to calibrate the capacitor...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1741
SubjectTerms Algorithms
Analog to digital converters
Calibration
Capacitors
Circuits and Systems
Convergence
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Machine learning
Optimization
Signal,Image and Speech Processing
Stability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qe9GD-MT6IgdvGtxssq-DSOsDEVulKva2ZCeJiLj1Uf-_SbrbqqCHPQVymNnMN8zM9w3AnhKokiwzVGhWUPsSMyoNNzRLYyW0YAzR8Z17_fjiXlwOo2ED-jUXxo1V1jHRB2o1QlcjP7SwZKElyEJ2_PpG3dYo112tV2jIarWCOvISY3PQCp0yVhNa3bP-zWDaV8iEX5Ps2m3UguGwotF4Mp3XaqEWw-wX8ZgmP6Fqln_-apl6JDpfgsUqhSSdic-XoaHLFVj4Jiy4Cuqqd0u7FqAU6Up8dtSNUhHHwyomHicjQ7pPY_LgK6Mf5Kkkt50B6ZyeED9EQAbaS6qirx6SSoX1kVzbCPNSUTfX4P787O7kglb7FCiGSTCmRomAJ5lTHJOMR5giJjbIKM5koJSMpE4Lk-kAWYyKF5imBpkwkktuVCoDvg7NclTqDSAsSXWMYajtgYii0KnMowk1siS2sBu1Yb82Xf46kc3IpwLJ3tC5NXTuDZ0nbdiurZtXT-gjnzm8DQe1xWfHf9-2-f9tWzAf2sRkMke2Dc3x-6fesYnFuNit_pYv1_7J2w
  priority: 102
  providerName: ProQuest
Title LMS-Based Background Calibration of Bit Weights in SAR ADC Using Reinforcement Learning Optimization
URI https://link.springer.com/article/10.1007/s00034-023-02536-7
https://www.proquest.com/docview/2931850921
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AMVHM
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWBAPEV5VB7YwFIcO68xhZYKKKCWijJFjh8IIQKi5f9zcZPyEAwMUQZbHu7su0---z4DHGqhdJQklgrDcoonMaHSckuTONTCCMaUKvnO_auwNxLn42BckcImdbd7XZJ0kXpOdnNaKhRzDH4BD2m0CI2glPPCXTzy03ntIBHuKeSypEYx4Y0rqszva3xPR58Y80dZ1GWb7hqsVjCRpDO_rsOCKTZg5Yt44Cboy_6QtjEJadKW6qmkZxSalFyrfOZV8mJJ-3FK7tzt54Q8FmSYDkh6ekJcowAZGCebqtwNIamUVh_INUaR54qeuQWjbuf2pEerNxOo8iNvSq0WHo-SUlVMMh6oWKkIA4nmTHpay0CaOLeJ8RQLlea5imOrmLCSS251LD2-DUvFS2F2gLAoNqHyfYMDIgj8UkleWd8oFoWYWoMmHNWmy15n0hjZXATZGTpDQ2fO0FnUhP3aull1TCYZYg3ECx76sAnHtcU_h_9ebfd_0_dg2UcwMusd24el6du7OUAwMc1bsBh3z1rQSM_uLzr4b3eubgYtt6M-AIX4xEM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL0q7QJYIJ4iUMALWIHF-DEPLyqU9KGUJgGlrchu6vEDVYhJIUGIn-PbuHY8DSDBrotZWfLizLXPta_PuQDPrTS2VMpT6VhDcSUqqr3wVFWFlU4yZkzQO48nxfBUvp3lsw342WlhwrPKbk-MG7Wdm3BH_hppCaklU5y9ufhCQ9eoUF3tWmjo1FrB7kSLsSTsOHI_vuMRbrFzuIf_-wXnB_snu0OaugxQw8tsSb2VmShV8OHSTOSmMqbEpWcF05m1OteuarxymWGFsaIxVeUNk14LLbytdCZw3muwJYVUePjbGuxP3k8v6xhKxrbMobxHkXxnSbYTxXvRG4YiZ-KXi4KWf1LjOt_9q0Qbme_gNtxKKSvpr2LsDmy49i7c_M3I8B7Y0fiYDpAQLRlo8ylIRVpLgu6rWUUYmXsyOF-SD_EmdkHOW3Lcn5L-3i6JjxbI1EULVxNvK0lyff1I3uGO9jlJRe_D6ZUg-wA223nrHgJhZeUKw7nDAZnnPLjaG8-dYWWBNJ_34GUHXX2xsumoLw2ZI9A1Al1HoOuyB9sdunVasot6HWA9eNUhvh7-92yP_j_bM7g-PBmP6tHh5Ogx3OCYFK3esG3D5vLrN_cEk5pl8zRFDoGzqw7WXw5jCGY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJEYPRHzEFcQ-6Ek7TD9meuZAyC7rCvLQgMS9DT39MMQ4i-4Swl_j11HdM8Oqid44zGmSPnxT3V9NV31fAby20lhVFJ5KxyqKO7Gg2gtPizyz0knGjAl654PDbOdEfhyn4wW47rQwoa2yOxPjQW0nJtyRbyAtIbUkBWcbvm2L-DwcbZ3_pGGCVKi0duM0mhDZc1eX-Ps23dwd4rd-w_no_ZftHdpOGKCGq2RGvZWJUEXw4NJMpCY3RuG2s4LpxFqdapdXvnCJYZmxojJ57g2TXgstvM11InDde7Ckgot7UKmPPtxWMAoZBzKHwh5F2h23gp0o24uuMBTZEp9UZFT9SYrzTPev4mzkvNEjWG6TVdJvomsFFlz9GB7-ZmH4BOz-wTEdIBVaMtDmexCJ1JYExVfVxBaZeDI4m5Gv8Q52Ss5qctw_Iv3hNontCuTIRfNWE-8pSev3-o18wrPsRysSfQond4LrM1isJ7V7DoSp3GWGc4cvZJry4GdvPHeGqQwJPu3B2w668rwx6ChvrZgj0CUCXUagS9WDtQ7dst2s03IeWj141yE-f_3v1V78f7VXcB9DtNzfPdxbhQccs6GmeW0NFme_LtxLzGZm1XoMGwKndx2nN81CBgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMS-Based+Background+Calibration+of+Bit+Weights+in+SAR+ADC+Using+Reinforcement+Learning+Optimization&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Song%2C+Xinyan&rft.au=Meng%2C+Qiao&rft.au=Huang%2C+Yujia&rft.au=Zong%2C+Chenchen&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=43&rft.issue=3&rft.spage=1741&rft.epage=1754&rft_id=info:doi/10.1007%2Fs00034-023-02536-7&rft.externalDocID=10_1007_s00034_023_02536_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon