Scikit-ANFIS: A Scikit-Learn Compatible Python Implementation for Adaptive Neuro-Fuzzy Inference System

The Adaptative neuro-fuzzy inference system (ANFIS) has shown great potential in processing practical data from control, prediction, and inference applications, reflecting advantages in both high performance and system interpretability as a result of the hybridization of neural networks and fuzzy sy...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fuzzy systems Vol. 26; no. 6; pp. 2039 - 2057
Main Authors Zhang, Dongsong, Chen, Tianhua
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.09.2024
Subjects
Online AccessGet full text
ISSN1562-2479
2199-3211
2199-3211
DOI10.1007/s40815-024-01697-0

Cover

More Information
Summary:The Adaptative neuro-fuzzy inference system (ANFIS) has shown great potential in processing practical data from control, prediction, and inference applications, reflecting advantages in both high performance and system interpretability as a result of the hybridization of neural networks and fuzzy systems. Matlab has been a prevalent platform that allows to utilize and deploy ANFIS conveniently. On the other hand, due to the recent popularity of machine learning and deep learning, which are predominantly Python-based, implementations of ANFIS in Python have attracted recent attention. Although there are a few Python-based ANFIS implementations, none of them are directly compatible with scikit-learn, one of the most frequently used libraries in machine learning. As such, this paper proposes Scikit-ANFIS, a novel scikit-learn compatible Python implementation for ANFIS by adopting a uniform format such as fit () and predict () functions to provide the same interface as scikit-learn. Our Scikit-ANFIS is designed in a user-friendly way to not only manually generate a general fuzzy system and train it with the ANFIS method but also to automatically create an ANFIS fuzzy system. We also provide four kinds of representative cases to show that Scikit-ANFIS represents a valuable addition to the scikit-learn compatible Python software that supports ANFIS fuzzy reasoning. Experimental results on four datasets show that our Scikit-ANFIS outperforms recent Python-based implementations while achieving parallel performance to ANFIS in Matlab, a standard implementation officially realized by Matlab, which indicates the performance advantages and application convenience of our software.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1562-2479
2199-3211
2199-3211
DOI:10.1007/s40815-024-01697-0