Prior Information on the Coefficients when the Disturbance Covariance Matrix is Unknown

In a linear regression model with arbitrary disturbance covariance structure, least squares estimators subject to correct linear restrictions dominate unrestricted least squares for all estimable functions of the parameters if and only if the covariance matrix obeys conditions closely related to tho...

Full description

Saved in:
Bibliographic Details
Published inEconometrica Vol. 44; no. 4; pp. 725 - 739
Main Author Taylor, William E.
Format Journal Article
LanguageEnglish
Published Menasha, Wis The Econometric Society 01.07.1976
George Banta Pub. Co. for the Econometric Society
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0012-9682
1468-0262
DOI10.2307/1913439

Cover

More Information
Summary:In a linear regression model with arbitrary disturbance covariance structure, least squares estimators subject to correct linear restrictions dominate unrestricted least squares for all estimable functions of the parameters if and only if the covariance matrix obeys conditions closely related to those of the Gauss-Markov theorem.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ISSN:0012-9682
1468-0262
DOI:10.2307/1913439