PSO-ECM: particle swarm optimization-based evidential C-means algorithm

As an extension of Fuzzy C-Means (FCM), Evidence C-Means (ECM) is proposed in the framework of Dempster–Shafer theory (DST) and has been applied to many fields. However, the objective function of ECM involves only the distortion between the object and the prototype, which relies heavily on the initi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 9; pp. 4133 - 4153
Main Authors Cai, Yuxuan, Zhou, Qianli, Deng, Yong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02139-x

Cover

More Information
Summary:As an extension of Fuzzy C-Means (FCM), Evidence C-Means (ECM) is proposed in the framework of Dempster–Shafer theory (DST) and has been applied to many fields. However, the objective function of ECM involves only the distortion between the object and the prototype, which relies heavily on the initial prototype. Therefore, ECM may encounter the problem of local optimization. To solve this problem, this paper introduces ECM with Particle Swarm Optimization (PSO) initialization to determine the initial clustering centroids, and proposes Particle Swarm Optimization-based Evidential C-Means (PSO-ECM), which reduces the influence of bad initial prototypes and improves the local optimality problem of ECM. PSO-ECM is compared with three other clustering algorithms in four experiments and with ECM on a noise-containing dataset. According to the experimental results, PSO-ECM performs well in terms of different clustering validity metrics compared with existing clustering algorithms, has high stability of clustering, and can effectively and stably cluster noise-containing datasets and accurately identify outlier points.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-024-02139-x