Parameter estimation for fractional-order nonlinear systems based on improved sparrow search algorithm

Parameter estimation is important in the study of control and synchronization of fractional-order nonlinear systems (FONSs). This paper proposes an improved Sparrow Search Algorithm (ISSA) for the parameter estimation problem of FONSs. The algorithm improves the population initialization, position u...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. C, Computational physics, physical computation Vol. 35; no. 10
Main Authors Zhou, Yongqiang, Yang, Renhuan, Chen, Yibin, Huang, Qidong, Shen, Chao, Yang, Xiuzeng, Zhang, Ling, Wei, Mengyu
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.10.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0129-1831
1793-6586
DOI10.1142/S0129183124501316

Cover

More Information
Summary:Parameter estimation is important in the study of control and synchronization of fractional-order nonlinear systems (FONSs). This paper proposes an improved Sparrow Search Algorithm (ISSA) for the parameter estimation problem of FONSs. The algorithm improves the population initialization, position update method of discoverers and warning sparrows based on Sparrow Search Algorithm (SSA), and the parameter estimation simulation experiment for fractional-order financial nonlinear system and fractional-order L nonlinear system is conducted to demonstrate this method. The experimental results show that the proposed ISSA is superior to the SSA, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA) and Harris Hawks Optimization (HHO) in terms of parameter optimization accuracy and convergence speed, which validates the advantages of the ISSA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0129-1831
1793-6586
DOI:10.1142/S0129183124501316