Parameter estimation for fractional-order nonlinear systems based on improved sparrow search algorithm
Parameter estimation is important in the study of control and synchronization of fractional-order nonlinear systems (FONSs). This paper proposes an improved Sparrow Search Algorithm (ISSA) for the parameter estimation problem of FONSs. The algorithm improves the population initialization, position u...
        Saved in:
      
    
          | Published in | International journal of modern physics. C, Computational physics, physical computation Vol. 35; no. 10 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          World Scientific Publishing Company
    
        01.10.2024
     World Scientific Publishing Co. Pte., Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0129-1831 1793-6586  | 
| DOI | 10.1142/S0129183124501316 | 
Cover
| Summary: | Parameter estimation is important in the study of control and synchronization of fractional-order nonlinear systems (FONSs). This paper proposes an improved Sparrow Search Algorithm (ISSA) for the parameter estimation problem of FONSs. The algorithm improves the population initialization, position update method of discoverers and warning sparrows based on Sparrow Search Algorithm (SSA), and the parameter estimation simulation experiment for fractional-order financial nonlinear system and fractional-order L nonlinear system is conducted to demonstrate this method. The experimental results show that the proposed ISSA is superior to the SSA, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA) and Harris Hawks Optimization (HHO) in terms of parameter optimization accuracy and convergence speed, which validates the advantages of the ISSA. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 0129-1831 1793-6586  | 
| DOI: | 10.1142/S0129183124501316 |