Multi-View Feature Transformation Based SVM+ for Computer-Aided Diagnosis of Liver Cancers With Ultrasound Images

It is feasible to improve the performance of B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) for liver cancers by transferring knowledge from contrast-enhanced ultrasound (CEUS) images. In this work, we propose a novel feature transformation based support vector machine plus (SVM+) algo...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 27; no. 3; pp. 1512 - 1523
Main Authors Zhang, Huili, Guo, Lehang, Wang, Jun, Ying, Shihui, Shi, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3233717

Cover

More Information
Summary:It is feasible to improve the performance of B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) for liver cancers by transferring knowledge from contrast-enhanced ultrasound (CEUS) images. In this work, we propose a novel feature transformation based support vector machine plus (SVM+) algorithm for this transfer learning task by introducing feature transformation into the SVM+ framework (named FSVM+). Specifically, the transformation matrix in FSVM+ is learned to minimize the radius of the enclosing ball of all samples, while the SVM+ is used to maximize the margin between two classes. Moreover, to capture more transferable information from multiple CEUS phase images, a multi-view FSVM+ (MFSVM+) is further developed, which transfers knowledge from three CEUS images from three phases, i.e., arterial phase, portal venous phase, and delayed phase, to the BUS-based CAD model. MFSVM+ innovatively assigns appropriate weights for each CEUS image by calculating the maximum mean discrepancy between a pair of BUS and CEUS images, which can capture the relationship between source and target domains. The experimental results on a bi-modal ultrasound liver cancer dataset demonstrate that MFSVM+ achieves the best classification accuracy of 88.24±1.28%, sensitivity of 88.32±2.88%, specificity of 88.17±2.91%, suggesting its effectiveness in promoting the diagnostic accuracy of BUS-based CAD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2022.3233717