Multi-View Feature Transformation Based SVM+ for Computer-Aided Diagnosis of Liver Cancers With Ultrasound Images
It is feasible to improve the performance of B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) for liver cancers by transferring knowledge from contrast-enhanced ultrasound (CEUS) images. In this work, we propose a novel feature transformation based support vector machine plus (SVM+) algo...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 27; no. 3; pp. 1512 - 1523 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2022.3233717 |
Cover
| Summary: | It is feasible to improve the performance of B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) for liver cancers by transferring knowledge from contrast-enhanced ultrasound (CEUS) images. In this work, we propose a novel feature transformation based support vector machine plus (SVM+) algorithm for this transfer learning task by introducing feature transformation into the SVM+ framework (named FSVM+). Specifically, the transformation matrix in FSVM+ is learned to minimize the radius of the enclosing ball of all samples, while the SVM+ is used to maximize the margin between two classes. Moreover, to capture more transferable information from multiple CEUS phase images, a multi-view FSVM+ (MFSVM+) is further developed, which transfers knowledge from three CEUS images from three phases, i.e., arterial phase, portal venous phase, and delayed phase, to the BUS-based CAD model. MFSVM+ innovatively assigns appropriate weights for each CEUS image by calculating the maximum mean discrepancy between a pair of BUS and CEUS images, which can capture the relationship between source and target domains. The experimental results on a bi-modal ultrasound liver cancer dataset demonstrate that MFSVM+ achieves the best classification accuracy of 88.24±1.28%, sensitivity of 88.32±2.88%, specificity of 88.17±2.91%, suggesting its effectiveness in promoting the diagnostic accuracy of BUS-based CAD. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2194 2168-2208 2168-2208 |
| DOI: | 10.1109/JBHI.2022.3233717 |